【正文】
庫降溫,若溫度值繼續(xù)上升則蜂鳴器報警。用濕度傳感器采集當前濕度,LCD1602液晶顯示當前濕度值,濕度值的上限值是設定好的。若當前采集值高于上限時,系統(tǒng)將自動采用控濕方案。濕度高于上限時,系統(tǒng)通過風扇控制外設給糧庫吹干,若濕度值繼續(xù)上升則蜂鳴器報警。本控制系統(tǒng)的難點在于:溫濕度檢測電路安裝與調(diào)試。通過畢業(yè)設計深深感受到了,只有全面系統(tǒng)的學習才能真正的掌握更多的知識。例如平時采用C語言開如程序較少,在本次設計中是一個很大的障礙,編程思路不廣,應用不熟練,各個方面考慮的不周到,以致經(jīng)過多次修改才能得到正常的運行結果。在硬件學習的基礎上進行軟件設計,深深地感到硬件基礎的重要性。在軟件設計過程中,系統(tǒng)的復習了四年多來所學的軟件方面知識。能夠?qū)⒂布c軟件相結合,設計出簡潔、結構化的程序。在設計過程中也曾遇到許多困難。尤其是設計過程中子程序代碼過多,子程序之間的套用,使得在一個中斷內(nèi)不能完成所有操作,不能得到預期的執(zhí)行結果等,所以要盡量少地將代碼寫在中斷當中。通過書寫論文,對各芯片的工作原理有了更深入的認識,能夠理論聯(lián)系實際,同時也建立起了很強的思考能力,并學習到了課本以外的知識,最重要的是鍛煉了自學的能力,這將為我以后走向工作崗位打下了堅實的基礎。總之,通過畢業(yè)設計,我掌握了許多實踐經(jīng)驗。致 謝經(jīng)過兩個多月的奮力拼搏和辛勤工作,本次畢業(yè)設計已經(jīng)接近尾聲,作為一個本科生我的的畢業(yè)設計,由于經(jīng)驗的匱乏,難免有許多考慮不周全的地方,如果沒有導師的督促指導,以及一起工作的同學們的支持,想要完成這個設計是難以想象的。在畢業(yè)設計期間,在眾位老師和同學的幫助下,我順利地完成了本次設計任務。通過此次設計,我在軟件研發(fā)與測試方面有很大收獲。我要感謝所有幫助過我的人。感謝學院和計算機系為提供的良好的開發(fā)環(huán)境。感謝我的導師譚曉昀老師在畢業(yè)設計的各個階段對我提出的寶貴意見和建議,以及在程序調(diào)試等多信階段耐心的指導和幫助。他們嚴謹?shù)闹螌W態(tài)度和淵博的知識儲備深深影響著我。感謝王文仲、孫平、孟祥蓮、朱國晗等所有硬件組的老師,在平日的學習中對的幫助與支持,感謝他們給我提出的建議,這些建議糾正了我的錯誤,使我少走了不少彎路,也使本系統(tǒng)無論是在代碼的編寫上還是在功能的實現(xiàn)上都更合理。此外,我還要感謝我的同學們在設計過程中,給予我很大的支持和鼓勵,幫助我解決設計中的問題。再次忠心的向所有指導、關心、照顧和幫助我的領導、老師、同學們表示最衷心的感謝!謝謝大家!參考文獻1 Katsuhiko Ogata.Modern Control Engineering.Publishing house of electronics industry,2000:23-462 IEEE Standards Collection.Software Engineering.1994 Edition.IEEE,1994:1-63 Dongyuan Yang.Finish Road Authority’s Strategy For The Traffic Management.2000: 5104 WEI Hongli. Design of a bus stop reporter. JOURNAL of XI’AN INSTITUTE OF TECHNOLOGY,2003:2122145 Intel Corp.Microcontroller Handbook,1986:12-396 楊恢先,黃輝先.單片機原理及應用.人民郵電出版社,2006:96-1397 趙亮,侯國銳.單片機C語言編程與實例.人民郵電出版社,2003:56-988 徐德民.最新C語言程序設計.電子工業(yè)出版社,1990:22-789 李群芳,肖看.單片機原理、接口及應用—嵌入式系統(tǒng)技術基礎.清華大學出版社,2005:10512310 王常力,羅安.集散型控制系統(tǒng)選型與應用.清華大學出版社,1992:5-2211 趙麗娟,邵欣.基于單片機的溫度監(jiān)控系統(tǒng)的設計與實現(xiàn).機械制造出版社,2006:34-5012 李朝青.PC機及單片機數(shù)據(jù)通信技術.北京航空航天大學出版社,2002:4-3013 徐愛鈞.單片機高級語言C51應用程序設計.電子工業(yè)出版社,1998:14-3714 張毅剛,彭喜元,姜守達.新編MCS51單片機應用設計.第二版.哈爾濱工業(yè)大學出版社,2006:194515 張迅,古江漢.單片智能溫度計及其在燙金機中的應用.南華大學電氣工程學院.2006:1-2附錄1 The basic concepts of temperature measurement First, the basic concepts of temperature measurement Temperature is characterized by hot and cold objects, level of physical quantities. The temperature only through the object changes with temperature indirect measurement of certain characteristics, while the values used to measure the temperature of an object called the temperature scale ruler. It provides temperature readings from (0:00), and the basic unit of measurement of temperature. At present the international munity more used with Fahrenheit temperature scale, Celsius temperature scale, thermodynamic temperature scale and the International Practical Temperature Scale. Fahrenheit (oF) provides that: In the standard atmospheric pressure, the ice melting point of 32 degrees, the boiling point of water, 212 degrees, divided into 180 equal divisions between, each section is divided into a newspaper39。s degrees, the symbol oF. Celsius temperature (℃) provides that: In the standard atmospheric pressure, the ice melting point of 0 degrees, the boiling point of water is 100 degrees, divided into 100 equal divisions between, each section is divided into a newspaper39。s degrees, the symbol ℃. Thermodynamic temperature scale called Kelvin temperature scale, or absolute temperature scale, which provides molecular motion stops when the temperature is absolute zero, denoted symbol K. International Practical Temperature Scale is an international agreement of Temperature Scale, which was similar with the thermodynamic temperature scale, but also reproduce high precision, easy to use. The current internationally accepted temperature scale in 1975, the 15th degree of international human rights adopted by the Assembly, International Practical Temperature Scale, 1968 Revision 1,975, recorded as: IPTS68 (Rev75). However, IPTS68 temperature and show there is a certain lack of CIPM in the 18 session of the International Measurement of the General Assembly resolution empowering the seventh session in 1989 adopted the 1990 International Temperature Scale ITS90, ITS90 temperature scale alternative to IPTS68. China since January 1, 1994 onwards full implementation of the ITS90 International Temperature Scale. 1990 International Temperature Scale (ITS90) outlined below. 1. Temperature Units Thermodynamic temperature (symbol T) is the basic skills in hand physical quantity, its unit is Kelvin (symbol K), defined as the Triple Point of Water 1/ of the thermodynamic temperature. As the previous definition of temperature scale used with the (freezing) to represent the temperature difference, it still retained the method. By definition, degrees Kelvin is equal to the size, temperature can also use Celsius or Kelvin to represent. International Temperature Scale ITS90 the same time, the definition of an international Kelvin temperature (symbol for the T90) and the International Celsius temperature (symbol t90) 2. International Temperature Scale ITS90 of the General ITS90 from up to the Planck radiation law using monochromatic radiation actually measured the maximum temperature. ITS90 is so developed that in the whole range, any temperature T90 is very close to the value of T when the temperature scale adopted by the best estimate value, as pared with the direct measurement of thermodynamic temperature, T90 measurement should be easier, and more precision and high reproducibility. 3. ITS90 definition of The first temperature range to for the between, T90 by 3He and 4He vapor pressure and temperature to define the relationship. The second temperature zone for the to the neon triple point () between the T90 is used to define the helium body thermometer. The second temperature zone to balance the triple point of hydrogen () to the freezing point of silver ( ℃) between, T90 is defined by a platinum resistance thermometer. It uses the definition provided by a set of fixed points and using specified interpolation method to indexing. Silver Freezing Point ( ℃) and abovezone, T90 is defined by Planck39。s r