freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

計算機專業(yè)畢業(yè)設計文獻翻譯-其他專業(yè)-資料下載頁

2025-01-19 02:24本頁面

【導讀】在這一章節(jié)我們討論一些方法,為了解決LS-SVM的大數據設定中的方法設計和歸類問題.

  

【正文】 general differentiable optimization problems. Individual optimizers correspond then to individual LSSVMs which are interacting through state synchronization constraints, can optimize in a cooperative way a group cost function for the ensemble and in this way realize collective intelligence. Multilayer works of LSSVMs In a mittee work one linearly bines the individual LSSVM models. A natural extension could be to bine the works in a nonlinear fashion. This might be done in several ways. One potion is to take an MLP which has the outputs of the individual LSSVMs as input to the work. The LSSVMs are first trained on subsets of data D1, D2, … , Dm and then serve in fact as a first nonlinear preprocessing layer after which an output layer is trained that is represented by an MLP work. Instead of an MLP one may take any other static nonlinear model, hence also LSSVMs could in principle be taken as a second layer. However, towards large data sets is will be more advantageous to use a parametric modeling approach for the second layer. A parametric approach to the training of kernel based models was also taken . by Tipping [253] in the relevance vector machine. A multilayer work of LSSVMs where the bination of the models is determined by solving a parametric optimization problem (. by Bayesian learning), can be considered as a nonlinear extension of this. The relevance of the LSSVM submodels is determined by the estimation of the second layer. When taking an MLP in the second layer, the model is described by () with () where M denotes the number of individual LSSVM models whose outputs Zi are the input to a MLP with output weight vector WERnh, hidden layer matrix VERn*m and bias vector dErnh where Nh denotes the number of hidden units. On can take multiple outputs as well. The coefficients aki, bki for i = 1, … , m are the solutions to a number of m linear systems for each of the individual LSSVMs trained on data sets Di(). In and the approach is illustrated on the estimation of a noisy sinc function, both tor m= 4 and m = 40 bined LSSVMs trained with RBF kernel Q = 5 and regularization constant R = 1. the outputs of these LSSVMs are taken as input to an MLP with one hidden layer and 6 hidden units. The MLP is trained by Bayesian learning. The results are pared with taking () which corresponds also to one single neuron with linear activation function. Both are trained by the function trained in Matlab’s neural works toolbox. In the zero mean random Gaussian noise with standard deviation was imposed on the true sinc function for generating the training data ,while in a standard deviation of 3 was taken. Nonlinear binations of trained LSSVM models. First LSSVM models are trained on subsets of data D1,… , Dm. Then a nonlinear bination of the LSSVM work outputs is taken. This leads to a multilayer work where the nonlinear function G(.) can for example be represented by a multilayer perceptron or by a second LSSVM layer which is trained then with the outes of the LSSVM models as input data. Alternatively, one may also view the LSSVM models as a linear or nonlinear preprocessing of the input data. Linear and nonlinear binations of LSSVMs with (Left) m = 4 LSSVMs and (Right) m = 40 LSSVMs for a noisy sinc function estimation problem (standard dev. Of Gaussian noise is ): (Top) 4000 given training data points, the intervals with vertical lines indicate the training data used for the individual LSSVMs。 (Middle) linear bination of LSSVMs with single neuron trained by Bayesian learning。 (Bottom) nonlinear bination of LSSVMs with MLP trained by Bauesian learning. Similar results as for the previous Figure but with standard dev. of Gaussian noise equal to 3. 第六章 大規(guī)模問題 在這一章節(jié) , 為了解決大規(guī)模數據設定中的功能設計和歸類問題 ,我們討論一些方法?;诟咚惯^程和不完整的 Cholesky 分解,我們解釋一下 Nystrom 方法對于低跌逼近的建議。然后提出在固定規(guī)模 LSSVM 方面的一個新技術 ——最小二乘支持向量機 。在這個 固定 規(guī)模 LSSVM 方法的 最小二乘支持向量機 中,單一取代了對偶,解決了存在的主要問題。在估計的映射到特征空間 B 后,形式上獲得了由核主成分分析得到的特征函數。這部分內容將在下一章節(jié)進行更詳細的介紹。這種方法提供了函數估計和密度估計之間的明確聯 系,利用原始的雙配方,解決如何用主動選擇適當的支撐向量來取代原有的隨機選擇的問題。下一步,我們旨在解釋在特征空間中構造一個合適的基本成分。此外,方法結合子是討論諸如委員會網絡、非線性以及多層擴展的方法。 低階近似法 Nystrom 方法 圖 線性支持向量機對偶問題既是如何解決大型數據集的問題,但是大維輸入空間問題是主要的問題。然而,對于非線性 SVMs 中沒有 的表達式的研究,其結果只能解決相關的內核函數的雙重問題。在固定規(guī)模尺寸方法 LSSVM 中 Nystrom 方法用于估計 本征函數。獲得估計為 和連接原始雙配方后,計算的 w, b 是在原始空間。 假設存在一個線性內核。前幾章我們已經提到過的對偶問題,其實可以同樣很好地解決。事實上存在的主要問題是對大型數據設置更有利詭計的雙重問題,以及找到更適合的大維輸入空間的問題。因為未知數分別為 和 ,其中 n 表示輸入空間的維以及 N 表示給定的訓練數據點。例如在線性函數估計的情況下,有消除錯誤變量 ,其中一個可以立即解決。在這種情況下映射 變?yōu)?,沒有需要解決的支持值 a 的雙重問題,所以這組數據肯定不是大型數據集。 ( ) 另一方面是在非線性的情況下,此情況要復雜得多。對于多選擇的內核,可能會變成無窮維數,因此也將 W 作為載體。然而,在這種情況下,仍然可以嘗試找到有意義的估計值 。 一個要找到這樣估算的過程是運用了 Nystrom方法,這就是眾所周知的面積積分方程 [14; 63],并且此方程已成功地應用在高斯過程的 Williams 和 Seeger下,在 [294]頁。此方法是用低秩逼近給定的核矩陣尋找隨機選擇 M 行 /列的核矩陣的方法。讓我們用表示內核大矩陣的 ,和表示小核矩陣基于隨機子樣本的 ,其中 M N(在實踐中常常要求 ),討論小核矩陣 ( ) 其中 包含對特征值和 對應的特征向量的特征值的分解。這是關系到特征函數 和特征值 的積分方程 ( ) 如下: ( ) 和 分別是 和 的積分方程 , 并且 是表示 項的矩陣 。這是可以理解的形式采樣 M 點 的積分。對于大內核矩陣的特征值分解為 ( ) 此外,正如在 [294]頁: ( )然后可以顯示 () 其中 是取自 的分塊矩陣 。 這些不帶偏見的見解是通過高斯過程回歸問題審議的,然后使用近似意義上的求解線性系統(tǒng)得到長期模型: ( ) 然后運用謝爾曼 莫里森 Woodbury 公式 [98]獲得 [294]: ( ) 其中 是經過公式( )計算后得到的, 來源于小核矩陣。人們通常認為 LSSVM 的分類和回歸導致圍繞核矩陣偏置項。以 Nystrom 方法的應用為中心的核矩陣的特征值分解方法是被采用的。最后,內核矩陣逼近誤差的進一步證實了調查結果 [206; 226]頁。 Nystrom方法已被應用于 LSSVM 的貝葉斯推理的第二個層次的框架,而解決的共軛梯度法 [273]頁的第一個解決方法卻無法解決 Nystrom方法的逼近問題。數據如表 ,這說明了三個數據集 CRA( leptograpsus 蟹), RSY(里普利合成數據), HEA(心臟疾病)是根據 [273]頁的數據得到的。在 [273]中也說明,更大的數據設置,如在 UCI 成人組數據中,可以由一個子樣本 100 個數據點,在第二個層次的推理,以確定 由 Nystrom方法的成功逼近而不是整個訓練數據集規(guī)模 33000。 表( )
點擊復制文檔內容
醫(yī)療健康相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1