freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx外文翻譯太陽(yáng)能空調(diào)系統(tǒng)綜述_有太陽(yáng)能空調(diào)嗎-資料下載頁(yè)

2025-01-13 22:37本頁(yè)面
  

【正文】 d solar collectors, Applied Energy, 89, pp: 380386, 2020. 9. Elsherbini A L and Maheshwari G P, “Impact of shading air cooled condensers on the efficiency of air conditioning systems”, Energy and Buildings, 42, pp: 19481951, 2020. 10. Guiyin Fang, Hainan, Hu and Xu Liu, Experimental Investigation on the photovoltaic thermal solar heat pump air conditioning system on water heating mode, Experimental Thermal and Fluid Science, 34, 736743, 2020. 11. Guo J and Shen H G, “Modeling solar driven ejector refrigeration system offering air conditioning for office buildings”, Energy and Buildings, 41, pp: 175181, 2020. 12. Ha Q P and Vakiloroaya V (2020), Modelling and optimal control of an energy efficient hybrid solar air conditioning system”,Automation in Construction, 2020. 13. Helm M, Keil C, Hiebler S, Mehling H and Schweigler C, “Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience”,International Journal of Refrigeration, 32, 596606, 2020. 14. Henning H M, Erpenbeck T, Hindenburg C and Santamaria I S, “The potential of solar energy use in desiccant cooling cycles, International Journal of Refrigeration, 24, pp: 220229, 2001. 15. Ibrahim I El Sharkawy, Hossam Abdel Meguid and Bidyut Baran Saha, Potential application of solar powered adsorptioncooling systems in the Middle East, Applied. Energy, 126, pp: 235245, 2020. 16. Lucas M, Martinez P, Sanchez A, Viedma A and. Zamora B, Improved. Hydrosolar Roof for Buildings air conditioning, Energy and Buildings, 35, pp: 963970, 2020. 17. Ma Q, Wang R Z, Dai Y J and. Zhai X Q, Performance analysis on a hybrid, air conditioning system of a green building, Energy and Buildings, 38, pp: 447453, 2020. 18. Min Tu, Cheng Qin Ren, Guang Fa Tang and. Zhen Sheng Zhao, “Performance parison between two novel configurations of liquid, desiccant air conditioning system, Building and. Environment, 45, pp: 28082816, 2020. 19. Moncef Balghouthi, Mohanmed. Hachemi Chahbani and. Amenallah Guizani, Solar Powered, air conditioning as a solution to reduce environmental pollution in Tunisia, Desalination, 185, pp: 105110, 2020. 20. Rakesh Kumar and. Marc A Rosen, UA critical review of photovoltaic thermal solar collectors for air heating, Applied. Energy, 88, pp: 36033614, 2020. 21. Rodriguez Hidalgo , Rodriguez Aumente P, Izquierdo Millan M, Lecuona Neumann A and. Salgado Mangual, Energy and. carbon emission savings in Spanish housing air conditioning using solar driven absorption system, Applied. Thermal Engineering, 28, 17341744, 2020. 22. Ronnen Levinson, Heng Pan, George Ban Weiss, Pablo Rosado, Riccardo Paolini and. Hashem Akbari, Potential benefits of solar reflective car shells: Cooler cabins, fuel savings and. emission reductions, Applied. Energy, 88, pp: 43434357, 2020. 23. Shan K Wang, Handbook of Air Conditioning and. Refrigeration, Second. Edition, McGraw Hill Publication, 2000. 24. Sukamongkol Y, Chungpaibulpatana S, Limmeechokchai B and. Sripadungtham, Condenser heat recovery with a PV/T air heating collector to regenerate desiccant for reducing energy use of an air conditioning room, Energy and. Buildings, 42, pp: 315325, 2020. 25. Thosapon Katejanekam and. Kumar S, Performance of a solar regenerated, liquid, desiccant ventilation pre conditioning system”, Energy and Buildings, 40, pp: 12521267, 2020. 26. Tingyao Chen, Youming Chen and. Francis W H Yik, Rational selection of near extreme coincident weather data with solar irradiation for risk based, air conditioning design, Energy and. Buildings, 39, pp:ll931202, 2020. 27. Vahid. Vakiloroaya, Bijan Samali and. Kambiz Pishghadam, Investigation of Energy efficient strategy for direct expansion air cooled, air conditioning systems, Applied. Thermal Engineering, 66, pp: 8493, 2020. 28. Wang S K and LavanZ, “Air Conditioning and Refrigeration”,Mechanical Engineering Handbook, CRC PressLLC, 1999. 29. Yonggao Yin and. Xiaosong Zhang, Comparative study on internally heated, and. adiabatic regenerators in liquid, desiccant air conditioning system, Building and. Environment, 45, pp: 17991807, 2020. 30. Yonggao Yin, Xiaosong Zhang and. Zhenqian Chen, Experimental study on dehumidifier and. regenerator of liquid, desiccant cooling air conditioning system, Building and. Environment, 42, pp: 25052511, 2020. 31. Zhai , Wang , Dai , Wu , Xu and. Ma Q, Solar integrated, energy system for a green building, Energy and Buildings, 39, 985993, 2020. A Review on Solar Powered Air Conditioning System 太陽(yáng)能空調(diào)系統(tǒng)綜述 Ravi Gugulothu,Naga Sarada Somanchi,Hima Bindu Banoth和Kishan Banothu 摘要:二十一世紀(jì)正迅速成為完美的能源風(fēng)暴,現(xiàn)代社會(huì)面臨著能源價(jià)格波動(dòng)和日益嚴(yán)重的環(huán)境問題以及能源供應(yīng)和安全問題。21世紀(jì)人類面臨的最大挑戰(zhàn)之一是能源。煤、石油、天然氣等化石燃料是人類社會(huì)一切重要的主要能源?;剂系娜紵呀?jīng)并正在對(duì)地球環(huán)境造成破壞。到2050年,隨著全球人口增長(zhǎng)和發(fā)展中國(guó)家經(jīng)濟(jì)擴(kuò)張,能源需求可能會(huì)增加一倍甚至三倍。這已經(jīng)引起了人們對(duì)潛在供應(yīng)困難、能源資源枯竭和加速臭氧層損耗、全球變暖和氣候變化等環(huán)境影響的關(guān)注。人類社會(huì)可利用的最豐富的能源是太陽(yáng)能。太陽(yáng)能的利用和人類歷史一樣古老。在各類可再生能源中,太陽(yáng)能利用最少??照{(diào)對(duì)于保持室內(nèi)環(huán)境的熱舒適性是必不可少的,特別是對(duì)于濕熱氣候。如今,包括冷卻和除濕的空調(diào)已經(jīng)成為商業(yè)和住宅建筑以及工業(yè)過程中的必要條件。夏季,由于空調(diào)系統(tǒng)的廣泛使用,電力需求大幅增加。這是該國(guó)電力供應(yīng)出現(xiàn)重大問題的根源,并導(dǎo)致二氧化碳排放量增加,造成環(huán)境污染和全球變暖。另一方面,由于含氯氟烴( CFC )和氫氟碳化合物( HCFC )制冷劑的存在,蒸汽壓縮空調(diào)系統(tǒng)對(duì)平流層臭氧消耗有影響。使用太陽(yáng)能來驅(qū)動(dòng)冷卻循環(huán)是有吸引力的,因?yàn)槔鋮s負(fù)荷大致與太陽(yáng)能的可用性同相。為了利用太陽(yáng)能冷卻,一種解決方案是使用吸收式冷卻器,使用水和溴化鋰溶液。太陽(yáng)能空調(diào)系統(tǒng)有助于減少化石燃料的使用。在不斷發(fā)展的節(jié)能空調(diào)技術(shù)中,液體除濕空調(diào)( LDAC )系統(tǒng)在過去幾十年中表現(xiàn)出了良好的性能,被認(rèn)為是與廣泛使用的傳統(tǒng)空調(diào)系統(tǒng)(CAC)的強(qiáng)大競(jìng)爭(zhēng)對(duì)手。干燥劑蒸發(fā)冷卻技術(shù)環(huán)保,可用于調(diào)節(jié)建筑物室內(nèi)環(huán)境。與傳統(tǒng)空調(diào)系統(tǒng)不同,除濕空調(diào)系統(tǒng)可以由太陽(yáng)能和工業(yè)廢熱等低級(jí)熱源驅(qū)動(dòng)。在這項(xiàng)研究中,重點(diǎn)是通過使用太陽(yáng)能來降低空調(diào)能力、節(jié)省燃料和減少排放。
關(guān)鍵詞:太陽(yáng)能,除濕空調(diào)系統(tǒng),加濕,除濕,常規(guī)空調(diào) 太陽(yáng)能作為一種可再生能源,越來越受到世界各國(guó)的重視。太陽(yáng)系可分為兩類:這些是將太陽(yáng)能轉(zhuǎn)換成熱能的熱系統(tǒng)和將太陽(yáng)能轉(zhuǎn)換成電能的光伏系統(tǒng)。然而,更多落在光伏電池上的太陽(yáng)輻射不是轉(zhuǎn)換成電能,而是反射或轉(zhuǎn)換成熱能。由于光伏電池工作溫度的升高,這種方法導(dǎo)致電轉(zhuǎn)換效率下降。
在過去的一個(gè)世紀(jì)里,科學(xué)界在兩個(gè)主要方面付出了很大努力來實(shí)現(xiàn)住房的能源可持續(xù)性;這些國(guó)家正在減少外部能源供應(yīng),其余國(guó)家則使用可再生能源。在這兩方面,太陽(yáng)能都越來越受歡迎,因?yàn)樗鼈冊(cè)黾恿四茉吹莫?dú)立性和可持續(xù)性,同時(shí)對(duì)環(huán)境幾乎沒有影響。
現(xiàn)代舒適的生活條件是以巨大的能源為代價(jià)的。全球變暖和臭氧消耗,以及過去幾年化石燃料對(duì)建筑能源系統(tǒng)設(shè)計(jì)和控制的成本上升。太陽(yáng)能資源豐富、清潔,用太陽(yáng)能替代傳統(tǒng)能源具有重要意義。因此太陽(yáng)能在建筑能源系統(tǒng)中起著重要作用。
化石燃料越來越稀缺,成本越來越高,減少溫室氣體排放的激勵(lì)措施也使得人們對(duì)太陽(yáng)能越來越感興趣。太陽(yáng)能價(jià)格低廉,能夠滿足家庭全年的需求。不幸的是,它的間歇性和隨天氣條件、時(shí)間和季節(jié)的變化導(dǎo)致供暖需求和太陽(yáng)能供應(yīng)之間的不匹配。
空調(diào)系統(tǒng)安裝在建筑物中,為居住者提供健康和生產(chǎn)環(huán)境。在廣泛使用的能源效率低的傳統(tǒng)空調(diào)系統(tǒng)的運(yùn)行中消耗了大量的能量,這導(dǎo)致了一些與能源生產(chǎn)相關(guān)的環(huán)境問題,例如空氣污染、全球變暖和酸雨。
從最近的研究來看,這些建筑消耗了全球約
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1