【文章內(nèi)容簡介】
還是計算機的CPU與外部設備之間常常要進行數(shù)據(jù)交換。不同的獨立系統(tǒng)有傳輸線路互相交換數(shù)據(jù)便是通信,構成整個通信的線路稱之為網(wǎng)絡,通信的獨立系統(tǒng)可以是計算機、PLC或其他有數(shù)據(jù)通信功能的數(shù)字設備,稱為DTE(Data Terminal Equipment)。傳輸線路的介質可以是雙絞線、同軸電纜、光纖、或無線電波等。MPI是多點通信接口(Multi plain Interface)的簡稱。MPI物理接口符合PROFIBUS RS485(EN 50170)接口標準?!?2Mbit/s,,只有能夠設置為PROFIBUS 接口的MPI網(wǎng)絡才支持12Mbit/s的通信速率。用STEP 7軟件包中的Configuration功能為每個網(wǎng)絡節(jié)點分配一個MPI地址和最高地址,最好標在節(jié)點外殼上;然后對PG、OP、CPU、CP、FM等包括的所有節(jié)點進行地址排序,連接時需在MPI網(wǎng)的第一個及最后一個節(jié)點接入通信終端匹配電阻。往MPI網(wǎng)添加一個新節(jié)點時,應該切斷MPI網(wǎng)的電源。 結 論鍋爐溫度控制系統(tǒng)采用成熟的PLC技術,采用軟硬件結合,較好的解決了傳統(tǒng)的鍋爐溫控系統(tǒng)中出現(xiàn)的問題。針對大部分加熱鍋爐來說本系統(tǒng)將是一個比較理想的溫控系統(tǒng)。通過對本系統(tǒng)的設計和調(diào)試,我們認識到,對于復雜系統(tǒng)的控制,如果采用繼電控制,不僅系統(tǒng)繁瑣,調(diào)試困難,故障概率大,而且對以后的維護也帶來困難。用PLC控制除了能解決以上問題以外,還具有以下特點: ①控制條理清楚,接線簡單明了。②用軟件代替?zhèn)鹘y(tǒng)的繼電控制,減少了設計上的困難,減少了系統(tǒng)的故障。③模塊化程序設計,便于調(diào)試,并且方便功能的改進。④編程圖形化,使之一目了然 本次設計,使我充分發(fā)揮了主觀能動性,將大學三年年所學的知識以畢業(yè)設計的形式應用到了實際當中。這其中,雖然我遇到了很多問題,但通過查閱相關資料、請教老師和與同學討論將這些問題一一解決,從而使我對大學三年所學到得知識有了進一步的加深和拓展,并且學會了西門子S7200是如何在溫度控制中應用的,相信這一定會對以后走上工作崗位的我有很大的幫助。20洛陽理工學院畢業(yè)設計論文謝 辭本次設計能夠圓滿完成,得到了廣大老師和同學們的幫助,在此向他們表示衷心的感謝! 大學三年的生活即將結束,在畢業(yè)設計學習中使我大學最后一學期過的非常充實,學到了很多知識,為將來工作做好了準備。而這一切,很大程度上歸功于我的指導老師楊文方老師,在此,我對我的指導老師楊老師表示真摯的感謝!楊老師在平時中對我們非常認真負責,給我們提供了很大的幫助,和我們畢業(yè)論文的完成有著密切的關系。楊老師平常對大家都很嚴格,但正是這種嚴格要求才使我們一步步的進步,學到很多知識。最后感謝在百忙之中抽出時間參加我畢業(yè)設計答辯的教授、高工和老師!21參考文獻[1]樊軍慶,,工業(yè)爐,2008[2]:中國電力出版社,2004[3]:機械工業(yè)出版社,2002[4]:高等教育出版社,2006[5]:電子工業(yè)出版社,2004[6]:清華大學出版社, 2003[7]:機械工業(yè)出版社,1990[8]:機械工業(yè)出版社,2002[9] S7200 可編程控制器系統(tǒng)手冊,2000[10] S7200 可編程控制器系統(tǒng)手冊,2003[11]:機械工業(yè)出版社,1993[12]吳忠俊,:機械工業(yè)出版社,2005[13](提高篇).北京:電子工業(yè)出版社,2005[14]:機械工業(yè)出版社,2006[15]陳在平,:機械工業(yè)出版社,2003[16]史國生,王念春,:化學工業(yè)出版社,2004[17]宮淑珍,:人民郵電出版社,2002[18]SIEMENS. SIMATIC S7200 Programmable Logic Controller(PLC) Tutorial,2007[19]附 錄附錄1 程序子程序0子程序1附錄2 I/O分配表模塊號輸入端子號輸出端子號地址號信號名稱說明CPU2261總啟動開關按鈕1加熱器輸出加溫2紅燈,“1”有效指示燈3綠燈,“1”有效指示燈4黃燈,“1”有效指示燈EM2221總停止開關按鈕1喇叭輸出,“1”有效聲報警器EM2351AIW0遠程電壓輸入12AIW2遠程電壓輸入23AIW4遠程電壓輸入34AIW6遠程電壓輸入41AQW0遠程電壓輸出1附錄3 控制系統(tǒng)的序號、名稱、地址、注釋序號名稱地址注釋序號名稱地址注釋1總啟動開關上升沿有效14過程變量VD032BIT2總停止開關上升沿有效15設定值VD432BIT3加熱器“1”有效16偏差值VD832BIT4紅燈“1”有效17增益VD1232BIT5綠燈“1”有效18采樣時間VD1632BIT6黃燈“1”有效19積分時間VD2032BIT7喇叭“1”有效20微分時間VD2432BIT8遠程電壓輸入1AIW012BIT21積分前項VD2832BIT9遠程電壓輸入2AIW212BIT22過程前值VD3232BIT10遠程電壓輸入3AIW412BIT23運行標志“1”有效11遠程電壓輸入4AIW612BIT24平均值VD4032BIT12電壓信號輸出1AQW012BIT25PID輸出VW4012BIT13PID表首地址VB08BIT2649外文資料翻譯外文翻譯原文 INDUSTRIAL AND COLLABORATIVE CONTROL SYSTEMS —— A COMPLEMENTARY SYMBIOSIS M. Clause, DESY, Hamburg, GermanyAbstract Looking at today’s control system one can find a wide variety of implementations. From pure industrial to collaborative control system (CCS) tool kits to home grown systems and any variation inbetween. Decisions on the type of implementation should be driven by technical arguments Reality shows that financial and sociological reasons form the plete picture. Any decision has it’s advantages and it’s drawbacks. Reliability, good documentation and support are arguments for industrial controls. Financial arguments drive decisions towards collaborative tools. Keeping the hands on the source code and being able to solve problems on your own and faster than industry are the argument for home grown solutions or open source solutions. The experience of many years of operations shows that which solution is the primary one does not matter, there are always areas where at least part of the other implementations exist. As a result heterogeneous systems have to be maintained. The support for different protocols is essential. This paper describes our experience with industrial control systems, PLC controlled turn key systems, the CCS tool kit EPICS and the operability between all of them. INTRODUCTION Process controls in general started at DESY in the early 80th with the installation of the cryogenic control system for the accelerator HERA (HadronElectronRingAnlage). A new technology was necessary because the existing hardware was not capable to handle standard process controls signals like 4 to 20mA input and output signals and the software was not designed to run PID control loops at a stable repetition rate of seconds. In addition sequence programs were necessary to implement startup and shutdown procedures for the plex cryogenic processes like cold boxes and pete pressor streets. Soon it was necessary to add interfaces to field buses and to add puting power to cryogenic controls. Since the installed D/3 system[1] only provided an documented serial connection on a multiuse board, the decision was made to implement a DMA connection to VME and to emulate the multiuse board’s functionality. The necessary puting power for temperature conversions came from a Motorola MVME 167 CPU and the field bus adapter to the in house SEDAC field bus was running on an additional MVME 162. The operating system was Waxworks and the application was the EPICS toolkit. Since this implementation was successful it was also implemented for the utility controls which were looking for a generic solution to supervise their distributed PLC’s.A SELECTION OF PROCESS CONTROL SYSTEMS AT DESYDCS (D/3) As a result of a market survey the D/3 system from GSE was selected for the HERA cryogenic plant. The decision was fortunate because of the DCS character of the D/3. The possibility to expand the system on the display and on the I/O side helped to solve the increasing control demands for HERA. The limiting factor for the size of the system is not the total number of I/O but the traffic on the munication network. This traffic is determined by the total amount of archived data no