freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

橢圓常結(jié)論及其結(jié)論完全版資料(編輯修改稿)

2025-07-17 08:24 本頁面
 

【文章內(nèi)容簡介】 直線與圓錐曲線相交所得的弦長直線具有斜率,直線與圓錐曲線的兩個交點坐標(biāo)分別為,則它的弦長注:實質(zhì)上是由兩點間距離公式推導(dǎo)出來的,只是用了交點坐標(biāo)設(shè)而不求的技巧而已(因為,運用韋達定理來進行計算.當(dāng)直線斜率不存在是,則.六、圓錐曲線的中點弦問題:(1)橢圓中點弦的斜率公式:設(shè)為橢圓弦(不平行軸)的中點,則有: 證明:設(shè),則有, 兩式相減得:整理得:,即,因為是弦的中點,所以,所以(2)遇到中點弦問題常用“韋達定理”或“點差法”求解。在橢圓中,以為中點的弦所在直線的斜率k=-;由(1)得七、橢圓的參數(shù)方程八、共離心率的橢圓系的方程:橢圓的離心
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1