freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

pwm交流斬控技術的交流穩(wěn)壓電源設計課程設計(編輯修改稿)

2025-07-04 07:27 本頁面
 

【文章內(nèi)容簡介】 射極間施加反壓或不加信號時,MOSFET內(nèi)的溝道消失,晶體管的基極電流被切斷,IGBT關斷。怕淑貧(4)反向阻斷怕淑貧 當集電極被施加一個反向電壓時,J1 就會受到反向偏壓控制,耗盡層則會向N區(qū)擴展。因過多地降低這個層面的厚度,將無法取得一個有效的阻斷能力,所以,這個機制十分重要。另一方面,如果過大地增加這個區(qū)域尺寸,就會連續(xù)地提高壓降。怕淑貧(5)正向阻斷怕淑貧 當柵極和發(fā)射極短接并在集電極端子施加一個正電壓時,P/NJ3結受反向電壓控制。此時,仍然是由N漂移區(qū)中的耗盡層承受外部施加的電壓。怕淑貧(6)閂鎖怕淑貧 IGBT在集電極與發(fā)射極之間有一個寄生PNPN晶閘管。在特殊條件下,這種寄生器件會導通。這種現(xiàn)象會使集電極與發(fā)射極之間的電流量增加,對等效MOSFET的控制能力降低,通常還會引起器件擊穿問題。晶閘管導通現(xiàn)象被稱為IGBT閂鎖,具體地說,這種缺陷的原因互不相同,與器件的狀態(tài)有密切關系。通常情況下,靜態(tài)和動態(tài)閂鎖有如下主要區(qū)別:怕淑貧當晶閘管全部導通時,靜態(tài)閂鎖出現(xiàn)。只在關斷時才會出現(xiàn)動態(tài)閂鎖。這一特殊現(xiàn)象嚴重地限制了安全操作區(qū)。為防止寄生NPN和PNP晶體管的有害現(xiàn)象,有必要采取以下措施:一是防止NPN部分接通,分別改變布局和摻雜級別。二是降低NPN和PNP晶體管的總電流增益。此外,閂鎖電流對PNP和NPN器件的電流增益有一定的影響,因此,它與結溫的關系也非常密切;在結溫和增益提高的情況下,P基區(qū)的電阻率會升高,破壞了整體特性。因此,器件制造商必須注意將集電極最大電流值與閂鎖電流之間保持一定的比例,通常比例為1:5。怕淑貧 IGBT的工作特性怕淑貧(1)靜態(tài)特性怕淑貧 IGBT 的靜態(tài)特性主要有伏安特性、轉移特性和開關特性。IGBT 的伏安特性是指以柵源電壓為參變量時,漏極電流與柵極電壓之間的關系曲線。輸出漏極電流比受柵源電壓 的控制,越高, Id 越大。它與GTR 的輸出特性相似.也可分為飽和區(qū)1 、放大區(qū)2 和擊穿特性3 部分。在截止狀態(tài)下的IGBT ,正向電壓由J2 結承擔,反向電壓由J1結承擔。如果無N+ 緩沖區(qū),則正反向阻斷電壓可以做到同樣水平,加入N+緩沖區(qū)后,反向關斷電壓只能達到幾十伏水平,因此限制了IGBT 的某些應用范圍。怕淑貧 IGBT 的轉移特性是指輸出漏極電流Id 與柵源電壓之間的關系曲線。它與MOSFET 的轉移特性相同,當柵源電壓小于開啟電壓 時,IGBT 處于關斷狀態(tài)。在IGBT 導通后的大部分漏極電流范圍內(nèi), Id 與呈線性關系。 最高柵源電壓受最大漏極電流限制,其最佳值一般取為15V左右。怕淑貧 IGBT 的開關特性是指漏極電流與漏源電壓之間的關系。IGBT 處于導通態(tài)時,由于它的PNP 晶體管為寬基區(qū)晶體管,所以其B 值極低。盡管等效電路為達林頓結構,但流過MOSFET 的電流成為IGBT 總電流的主要部分。此時,通態(tài)電壓 可用式()表示怕淑貧 式()怕淑貧式中Uj1 —— JI 結的正向電壓, ~1V ; ——擴展電阻 上的壓降;——溝道電阻。怕淑貧通態(tài)電流Ids 可用下式()表示:怕淑貧 式()怕淑貧式中——流過MOSFET 的電流。怕淑貧 由于N+ 區(qū)存在電導調(diào)制效應,所以IGBT 的通態(tài)壓降小,耐壓1000V的IGBT 通態(tài)壓降為2 ~ 3V 。IGBT 處于斷態(tài)時,只有很小的泄漏電流存在。怕淑貧(2)動態(tài)特性怕淑貧 IGBT 在開通過程中,大部分時間是作為MOSFET 來運行的,只是在漏源電壓 下降過程后期, PNP 晶體管由放大區(qū)至飽和,又增加了一段延遲時間。 為開通延遲時間, 為電流上升時間。實際應用中常給出的漏極電流開通時間 即為 之和。漏源電壓的下降時間由 和組成。怕淑貧IGBT的觸發(fā)和關斷要求給其柵極和基極之間加上正向電壓和負向電壓,柵極電壓可由不同的驅動電路產(chǎn)生。當選擇這些驅動電路時,必須基于以下的參數(shù)來進行:器件關斷偏置的要求、柵極電荷的要求、耐固性要求和電源的情況。因為IGBT柵極 發(fā)射極阻抗大,故可使用MOSFET驅動技術進行觸發(fā),不過由于IGBT的輸入電容較MOSFET為大,故IGBT的關斷偏壓應該比許多MOSFET驅動電路提供的偏壓更高。怕淑貧IGBT在關斷過程中,漏極電流的波形變?yōu)閮啥巍R驗镸OSFET關斷后,PNP晶體管的存儲電荷難以迅速消除,造成漏極電流較長的尾部時間,td(off)為關斷延遲時間,為電壓的上升時間。實際應用中常常給出的漏極電流的下降時間由t(f1)和t(f2)兩段組成,而漏極電流的關斷時間為怕淑貧 式 ()怕淑貧式中,與之和又稱為存儲時間。怕淑貧 IGBT的開關速度低于MOSFET,但明顯高于GTR。IGBT在關斷時不需要負柵壓來減少關斷時間,但關斷時間隨柵極和發(fā)射極并聯(lián)電阻的增加而增加。IGBT的開啟電壓約3~4V,和MOSFET相當。IGBT導通時的飽和壓降比MOSFET低而和GTR接近,飽和壓降隨柵極電壓的增加而降低。怕淑貧正式商用的IGBT器件的電壓和電流容量還很有限,遠遠不能滿足電力電子應用技術發(fā)展的需求;高壓領域的許多應用中,要求器件的電壓等級達到10KV以上,目前只能通過IGBT高壓串聯(lián)等技術來實現(xiàn)高壓應用。國外的一些廠家如瑞士ABB公司采用軟穿通原則研制出了8KV的IGBT器件,德國的EUPEC生產(chǎn)的6500V/600A高壓大功率IGBT器件已經(jīng)獲得實際應用,日本東芝也已涉足該領域。與此同時,各大半導體生產(chǎn)廠商不斷開發(fā)IGBT的高耐壓、大電流、高速、低飽和壓降、高可靠性、低成本技術,主要采用1um以下制作工藝,研制開發(fā)取得一些新進展。怕淑貧 IGBT的發(fā)展歷史怕淑貧 1979年,MOS柵功率開關器件作為IGBT概念的先驅即已被介紹到世間。這種器件表現(xiàn)為一個類晶閘管的結構(PNPN四層組成),其特點是通過強堿濕法刻蝕工藝形成了V形槽柵。怕淑貧80年代初期,用于功率MOSFET制造技術的DMOS(雙擴散形成的金屬氧化物半導體)工藝被采用到IGBT中來。[2]在那個時候,硅芯片的結構是一種較厚的NPT(非穿通)型設計。后來,通過采用PT(穿通)型結構的方法得到了在參數(shù)折衷方面的一個顯著改進,這是隨著硅片上外延的技術進步,以及采用對應給定阻斷電壓所設計的n+緩沖層而進展的[3]。幾年當中,這種在采用PT設計的外延片上制備的DMOS平面柵結構,其設計規(guī)則從5微米先進到3微米。怕淑貧 90年代中期,溝槽柵結構又返回到一種新概念的IGBT,它是采用從大規(guī)模集成(LSI)工藝借鑒來的硅干法刻蝕技術實現(xiàn)的新刻蝕工藝,但仍然是穿通(PT)型芯片結構。[4]在這種溝槽結構中,實現(xiàn)了在通態(tài)電壓和關斷時間之間折衷的更重要的改進。怕淑貧 硅芯片的重直結構也得到了急劇的轉變,先是采用非穿通(NPT)結構,繼而變化成弱穿通(LPT)結構,這就使安全工作區(qū)(SOA)得到同表面柵結構演變類似的改善。怕淑貧 這次從穿通(PT)型技術先進到非穿通(NPT)型技術,是最基本的,也是很重大的概念變化。這就是:穿通(PT)技術會有比較高的載流子注入系數(shù),而由于它要求對少數(shù)載流子壽命進行控制致使其輸運效率變壞。另一方面,非穿通(NPT)技術則是基于不對少子壽命進行殺傷而有很好的輸運效率,不過其載流子注入系數(shù)卻比較低。進而言之,非穿通(NPT)技術又被軟穿通(LPT)技術所代替,它類似于某些人所謂的“軟穿通”(SPT)或“電場截止”(FS)型技術,這使得“成本—性能”的綜合效果得到進一步改善。怕淑貧 1996年,CSTBT(載流子儲存的溝槽柵雙極晶體管)使第5代IGBT模塊得以實現(xiàn)[6],它采用了弱穿通(LPT)芯片結構,又采用了更先進的寬元胞間距的設計。目前,包括一種“反向阻斷型”(逆阻型)功能或一種“反向導通型”(逆導型)功能的IGBT器件的新概念正在進行研究,以求得進一步優(yōu)化。怕淑貧IGBT功率模塊采用IC驅動,各種驅動保護電路,高性能IGBT芯片,新型封裝技術,從復合功率模塊PIM發(fā)展到智能功率模塊IPM、電力電子積木PEBB、電力模塊IPEM。PIM向高壓大電流發(fā)展,其產(chǎn)品水平為1200—1800A/1800—3300V,IPM除用于變頻調(diào)速外,600A/2000V的IPM已用于電力機車VVVF逆變器。平面低電感封裝技術是大電流IGBT模塊為有源器件的PEBB,用于艦艇上的導彈發(fā)射裝置。IPEM采用共燒瓷片多芯片模塊技術組裝PEBB,大大降低電路接線電感,提高系統(tǒng)效率,現(xiàn)已開發(fā)成功第二代IPEM,其中所有的無源元件以埋層方式掩埋在襯底中。智能化、模塊化成為IGBT發(fā)展熱點。怕淑貧現(xiàn)在,大電流高電壓的IGBT已模塊化,它的驅動電路除上面介紹的由分立元件構成之外,整機的可靠性更高及體積更小。怕淑貧 IGBT的發(fā)展前景編輯怕淑貧 2010年,中國科學院微電子研究所成功研制國內(nèi)首款可產(chǎn)業(yè)化IGBT芯片,由中國科學院微電子研究所設計研發(fā)的1543A /1200V IGBT系列產(chǎn)品(采用Planar N
點擊復制文檔內(nèi)容
電大資料相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1