【文章內(nèi)容簡介】
ledge discovery process. However, in industry, in media, and in the database research milieu, the term “data mining” is being more popular than the longer term of “knowledge discovery in databases”. Therefore, in this book, we choose to use the term “data mining”. We adopt a broad view of data mining functionality: data mining is the process of discovering interesting knowledge from large amounts of data stored either in databases, data warehouses, or other information repositories. Based on this view, the architecture of a typical data mining system may have the following major ponents: 1. Database, data warehouse, or other information repository. This is one or a set of databases, data warehouses, spread sheets, or other kinds of information repositories. Data cleaning and data integration techniques may be performed on the data. 2. Database or data warehouse server. The database or data warehouse server is responsible for fetching the relevant data, based on the user’s data mining request. 3. Knowledge base. This is the domain knowledge that is used to guide the search, or evaluate the interestingness of resulting patterns. Such knowledge can include concept hierarchies, used to organize attributes or attribute values into different levels of abstraction. Knowledge such as user beliefs, which can be used to assess a pattern’s interestingness based on its unexpectedness, may also be included. Other examples of domain knowledge are additional interestingness constraints or thresholds, and metadata (., describing data from multiple heterogeneous sources). 4. Data mining engine. This is essential to the data mining system and ideally consists of a set of functional modules for tasks such as characterization, association analysis, classification, evolution and deviation analysis. 5. Pattern evaluation module. This ponent typically employs interestingness measures and interacts with the data mining modules so as to focus the search towards interesting patterns. It may access interestingness thresholds stored in the knowledge base. Alternatively, the pattern evaluation module may be integrated with the mining module, depending on the implementation of the data mining method used. For efficient data mining, it is highly remended to push the evaluation of pattern interestingness as deep as possible into the mining process so as to confine the search to only the interesting patterns. 6. Graphical user interface. This module municates between users and the data mining system, allowing the user to interact with the system by specifying a data mining query or task, providing information to help focus the search, and performing exploratory data mining based on the intermediate data mining results. In addition, this ponent allows the user to browse database and data warehouse s