freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx江西教師招聘面試高中數(shù)學(xué)說課稿正弦定理范文大全(留存版)

2024-10-15 04:58上一頁面

下一頁面
  

【正文】 。(2)c=54cm,b=39cm,C=115176。教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。(四)教材編寫理念上的變化原《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》中,解斜三角形作為平面向量知識(shí)的應(yīng)用,突出其工具性和應(yīng)用性。AB長為1m,想修好這個(gè)零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。9cm。(2)c=54cm,b=39cm,C=115176。二、學(xué)情分析我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。)放手給學(xué)生實(shí)踐的機(jī)會(huì)和時(shí)間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實(shí)踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。師生共同總結(jié)本節(jié)課的收獲的同時(shí),引導(dǎo)學(xué)生學(xué)會(huì)自己總結(jié),讓學(xué)生進(jìn)一步回顧和體會(huì)知識(shí)的形成、發(fā)展、完善的過程。三、說教學(xué)目標(biāo)根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):(一)知識(shí)與技能能證明正弦定理,并能利用正弦定理解決實(shí)際問題。素的過程叫做解三角形。 ﹑難點(diǎn)教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用; 教學(xué)難點(diǎn):正弦定理的探索及證明;教學(xué)中為了達(dá)到上述目標(biāo),突破上述重難點(diǎn),我將采用如下的教學(xué)方法與手段二、教學(xué)方法與手段教學(xué)過程中以教師為主導(dǎo),學(xué)生為主體,創(chuàng)設(shè)和諧、愉悅教學(xué)環(huán)境。能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。(五)講解例題,鞏固定理1.例1。2.它表述了三角形的邊與對角的正弦值的關(guān)系。過程與方法目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,體會(huì)數(shù)形結(jié)合解決問題。,c=10cm(2)A=60176。接下來我將從教材分析、學(xué)情分析、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)過程等幾個(gè)方面展開我的說課。根據(jù)本節(jié)課的內(nèi)容特點(diǎn),我認(rèn)為應(yīng)該選擇講授法,練習(xí)法,學(xué)生自主思考探索等教學(xué)方法。(三)課堂練習(xí)當(dāng)然一節(jié)課只得出結(jié)論還是不夠的,作為一節(jié)數(shù)學(xué)課要及時(shí)對知識(shí)進(jìn)行應(yīng)用。此類不等式的證明分析法理解簡單,幾何法稍難。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。(二)探尋特例,提出猜想,從自身熟悉的特例(測河寬做直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。同時(shí)學(xué)生已經(jīng)具備了一定的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。,c=20cm△ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30176。4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明(四)歸納總結(jié),簡單應(yīng)用1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。,c=20cm2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30176。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。②在利用正弦定理來解三角形的過程中,逐步培養(yǎng)應(yīng)用數(shù)學(xué)知識(shí)來解決社會(huì)實(shí)際問題的能力。復(fù)習(xí)初中學(xué)習(xí)的任意三角形中的邊和角存在什么樣的關(guān)系。因此本節(jié)的學(xué)習(xí)有著極其重要的地位。(本題簡單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實(shí)踐中發(fā)現(xiàn)的問題給予必要的講評)充分給學(xué)生自己動(dòng)手的時(shí)間和機(jī)會(huì),由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。(二)特殊入手,發(fā)現(xiàn)規(guī)律問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請你根據(jù)初中知識(shí),解決這樣一個(gè)問題。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。c=10cm(2)A=60176。在△ABC中,已知A=32176。學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對任意三角形性質(zhì)的探究。(2)能運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題。2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。c=10cm(2)A=60176。(四)歸納總結(jié),簡單應(yīng)用,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)教學(xué)目標(biāo)分析:知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動(dòng)手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。B=176。學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。二 教法為了更有效地突出重點(diǎn),突破難點(diǎn),本節(jié)課 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。而《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》將解三角形作為幾何度量問題來處理,突出幾何的作用,為學(xué)生理解數(shù)學(xué)中的量化思想、為進(jìn)一步學(xué)習(xí)數(shù)學(xué)奠定基礎(chǔ)。(二)探尋特例,提出猜想1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。解三角形。學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。同時(shí),考慮到有部分同學(xué)基礎(chǔ)較差,考個(gè)人或小組可能無法完成探究任務(wù),教師在學(xué)生動(dòng)手的同時(shí),通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時(shí),也讓從無從下手的同學(xué)有個(gè)參考,不至于閑呆著浪費(fèi)時(shí)間。(六)布置作業(yè),鞏固提高(二)過程與方法通過正弦定理的推導(dǎo)過程,提高分析問題、解決問題的能力。在介紹完正弦定理后,接下來介紹正弦定理的應(yīng)用。根據(jù)本節(jié)課內(nèi)容和學(xué)生認(rèn)知水平,我主要采用啟導(dǎo)法、感性體驗(yàn)法、多媒體輔助教學(xué)。情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。(四)講解例題(8分鐘). 在△ABC中,已知A=32176。,將幾何問題轉(zhuǎn)化為代數(shù)問題。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點(diǎn)三學(xué)法指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對任意三角形性質(zhì)的探究。在△ABC中,已知A=32176。3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。從特殊到一般,嚴(yán)格證明。,B=45176。一、說教材我認(rèn)為要真正的教好一節(jié)課,首先就是要對教材熟悉,那么我就先來說一說我對本節(jié)課教材的理解。六、說教學(xué)過程而教學(xué)方法的具象化就是教學(xué)過程,基于新課標(biāo)提出的教學(xué)過程是師生積極參與、交往互動(dòng)、共同發(fā)展的過程。所以我設(shè)計(jì)了如下兩道課堂練習(xí):(2)一段長為36m的籬笆圍成矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí)菜園面積最大?最大面積是多少? 這樣的問題能夠兼顧到本節(jié)課的所有主要內(nèi)容,并且問題具有層次性,能讓學(xué)生初步感知基本不等式應(yīng)用中“積定和最小,和定積最大”的規(guī)律,為后續(xù)基本不等式的應(yīng)用做好了鋪墊,利于學(xué)生的思維發(fā)展。幾何法是由幾何中的不等關(guān)系,進(jìn)行證明。四、說教學(xué)重難點(diǎn)并且我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。)(八)作業(yè)布置如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。,,使學(xué)生明確,利用正弦定理求角有兩種可能。比如說我們的架設(shè)橋梁,我們首先要測量河的寬度,通常技術(shù)人員都是在河的一邊就能測出河的寬度,用的工具是測角儀和卷尺,他們在不過河的情況下,就能測出河的寬度,同學(xué)們你們覺得不過河能測出河的寬度么?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。二、學(xué)習(xí)者分析作為高中生,在此之前已學(xué)習(xí)了三角函數(shù)、平面向量知識(shí),這為過渡到本章的學(xué)習(xí)做好了鋪墊作用。,B=45176。3.提示學(xué)生思考哪些知識(shí)能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。,B=45176。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)在三角形中,角與所對的邊滿足關(guān)系注意:,需要嚴(yán)格的理論證明。謝謝!正弦定理說課稿5大家好,今天我向大家說課的題目是《正弦定理》。(2)能力目標(biāo):①通過對直角三角形邊角數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理,體驗(yàn)用特殊到一般的思想方法發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程。(一)導(dǎo)入新課首先是導(dǎo)入環(huán)節(jié),我將采用溫故知新的導(dǎo)入方式。本節(jié)課的學(xué)習(xí),也為以后學(xué)習(xí)和解決生活中的一些問題提供幫助。我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個(gè)簡單的問題:
點(diǎn)擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1