【摘要】1.如圖,在△ABC中,D是BC上一點(diǎn),E是AD上一點(diǎn),且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點(diǎn)D在BC邊上移動(dòng),連接AD,將△ADC沿直線AD翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C1.(1)當(dāng)AC1⊥BC時(shí),CD的長是多少?(2)設(shè)C
2025-03-25 06:32
【摘要】相似三角形說課稿各位評(píng)委,各位老師:大家好,我是趙勇連。今天我講的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大版八年級(jí)下冊(cè)第四章第5節(jié)《相似三角形》。我將從五個(gè)方面進(jìn)行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大版八年級(jí)下冊(cè)第四章第5節(jié)內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了線段的比,形狀相同的圖形及相似多邊形
2025-08-20 19:21
【摘要】相似三角形對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫相似三角形.三角形相似判定:,對(duì)應(yīng)邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。1:兩角對(duì)應(yīng)相等,兩三角形相似。2:兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似。
2024-11-09 12:54