【正文】
rnately, two full swing and so on to support, thus realizing the rapid movement of insects, walking the track line is a Juchi Zhuang curve. Robot used gait indicate the movement as shown in Figure 1: (3) β 0. 5, when the robot move faster, have six legs at the same time as the swing of the moment, that is, six legs in the air at the same time, in a vacant state (see Figure 2 (c)), obviously This process requires the turn of robot bodies with flexibility and absorber function, otherwise difficult to achieve. The research paper by 6 foot robot gait is β = 0. 5 when the state.s movement will be a halfups and downs, if he would be able to footpath in contravention to maintain the formation of the robot can maintain the smooth progress. Besides walking robot requires a strong ability to adapt to the environment, it must be able to print and stability on the steps to walk, and can leap obstacles, Wang ditch, the road to face different trajectory curves have different requirements: the road to the plains require a certain The speed, height requirements and can be lifted over the barrier requirements across the smooth, fulltrajectory that the choice of the walking robot, it is very important. Foottrajectory chosen to be the main consideration of the following questions [3]: (a) of the high aspect ratio: the ratio of height to width of a direct response to movement of the curve. The greater the ratio of the full trajectory of the higher end, the corresponding level beyond the capacity of the stronger forward at the same time (velocity) on the worse. (b) of length: the width of certain circumstances, the longer the length of curves in the air campaign more time, this will directly affect the speed of the swinging leg, thus affecting the speed of walking. The shorter length curve, the shorter the time to campaign, but the corresponding ability to leap worse. According to walk the walkdemand, initially set footmovement of the ratio of height to width and length curve, and then use the link on the prior series of patterns [5] (as shown in Figure 3), to find out from the map and requirements Similar to the trajectory of the curve, and then direct the four bodies found in various size parameters. In this paper, biorobot designed by the step to 3 mm, the selected used as a robotfoot trajectory of the curve (see figure) (c) the flat part (that is, at the foot robot movement to end conflict with the part of) the length of about 3 mm, this plane can be identified in all four linkage bar for the length: Crank A = 1mm, link B = 3 mm, Rocker C = 3. 5 mm, fixedD = 3. 5 mm. Line OA 39。s center of gravity position in 2, 4, 6 by the three legs supporting a triangular stability in the region, the original support legs 1, 3, 5 have been lifted and prepared to step forward (see Figure 1 (d)), swing legs 1, 3, 5 step forward (see Figure 1 (e)), support legs 2, 4, 6 at this time Support a robot body, a bodydriven robot, robot body movement forward a half step S (see Figure 1 (f)), so continuously from the gait (a), (b), ( c), (d), (e), (f), (a), cycles, the constant cycle robot movement. 3 micro Hexapod biorobot design gait Walking gait is designed to achieve one of the keys to achieve the ideal walking, consider the following requirements: (1) walk a smooth, harmonious and Jintuiziru, without shaking around and before and after impact (2) joints between the body and no more The impact, particularly in the legs of the swing, contact with the ground for a soft landing, (3) to maintain the body parallel with the ground, such as sports and always, there was no obvious fluctuations, (4) swing leg stepped quickly, legs Trajectory of the sleek, joint speed and acceleration trajectory no abnormal points (5) of the Air β coefficient of reasonable value. and leg movements of the air coefficient Figure 2 for a walk in the cycle T Hexapod Robot swing phase and the support of the alternative process. According to β coefficient of the size of space can be divided into three situations: (1) β = 0. 5, the three legs of the swing at the same time, another three support legs lifted immediately, or any time at the same time, or only support of the swing phase ( Figure 2 (a))。在程序安裝、軟件應(yīng)用等方面都為我們提供了很大的方便,在此一并表示衷心的感謝。這不僅提高了我們的設(shè)計能力和動手水平。機器人腿部機構(gòu)的設(shè)計經(jīng)歷了多次改進,由簡單到復(fù)雜,才逐漸從設(shè)想變?yōu)楝F(xiàn)實,從軸鍵連接到鈑金件設(shè)計,幾乎推翻了最初的設(shè)計。 連桿機構(gòu)圖 旋轉(zhuǎn)板上的步進電機的輸出軸帶動連桿機構(gòu)的短桿1整周旋轉(zhuǎn),2兩桿螺栓與3桿連接。:步長:步高:旋轉(zhuǎn)臂距地面: 僅驗算參數(shù)2,但腿向正前方伸直時:(23+36)+12+58+20≤115 ,20mm是伸出臂的寬度。240176。90176。并且通過控制還可以實現(xiàn)平穩(wěn)的勻速運動。 =176。將這驅(qū)動力分解為兩個分力:沿受力點C的速度方向的分力和垂直于方向的分力。一條腿用二個主動構(gòu)件,不僅可以提高效率,而且易于控制軟件的開發(fā),但對于本設(shè)計不太適合,反對稱機構(gòu)解決了受力問題,但增加了機構(gòu)的復(fù)雜程度,對于配合的要求更高,不符合設(shè)計要求;還增加了動力源的數(shù)目使控制系統(tǒng)更為復(fù)雜。(2) 執(zhí)行機構(gòu)關(guān)系到運動的最終狀態(tài),決定運行的姿態(tài)。根據(jù)占空系數(shù)β的大小可分為3種情況:(1)β=,在三擺動腿著地的同時,另外三支撐腿立即抬起,即任意時刻同時只有支撐相和擺動相((a));(2)β>,機器人移動較慢時,擺動相與支撐相有一短暫的重疊過程,即機器人有六條腿同時著地的狀態(tài)((b));β<,機器人移動較快時,六條腿有同時為擺動相的時刻,即六條腿同時在空中,處于騰空狀態(tài)((c)),顯然此交替過程要求機器人機構(gòu)具有彈性和消振功能,否則難以實現(xiàn)。理論上而言,六足可供選擇的步態(tài)較多,但也應(yīng)該遵守一般的準(zhǔn)則:①所選步態(tài)應(yīng)符合動物的行走習(xí)慣。因此,機器人的小型化和微型化是一個發(fā)展趨勢。衛(wèi)星仿生機器人有些已不是傳統(tǒng)常規(guī)機器人的按比例縮小,它的開發(fā)涉及到電磁、機械、熱、光、化學(xué)、生物等學(xué)科。1999年日本研制的寵物狗AIBOERS110具有18個關(guān)節(jié),每個關(guān)節(jié)由伺服電機驅(qū)動以保持柔性運動。未來的移動機器人應(yīng)該具有行動決策和規(guī)劃,以及自動執(zhí)行規(guī)劃能力,集人工智能、智能控制、信息處理、檢測與轉(zhuǎn)換等專業(yè)技術(shù)為一體的系統(tǒng)。隨著機器人的工作環(huán)境和工作任務(wù)的復(fù)雜化,要求機器人具有更高的靈活性、可靠性、準(zhǔn)確性、穩(wěn)定性和更強的適應(yīng)性。仿生機器人的類型很多。哈爾濱工業(yè)大學(xué)月球車:輪腿式結(jié)構(gòu)是現(xiàn)今最流行的行星探測車結(jié)構(gòu),雖然與國外的水平還有不小的差距,但國家政府在這方面也加大了投入力量,現(xiàn)在一些高等院校和科研機構(gòu)相繼開展了有關(guān)輪腿式機器人方面的研究工作,也取得了一定的成果。同時,在設(shè)計時必須考慮到尺寸效應(yīng)、新材料、新工藝等問題。)分成兩組運動,實現(xiàn)身體的穩(wěn)定前移,利用伸出臂電機的旋轉(zhuǎn),來改變機器人前進的方向,步進電機通過單片機系統(tǒng)進行控制,從機驅(qū)動步進電機,主機通過串行通信協(xié)調(diào)各個單片機,主從機的配合就能實現(xiàn)步進機器人走直線,轉(zhuǎn)彎等設(shè)計要求。和動物行走不同,步行機構(gòu)的行走必須加以人為的控制,如果所選步態(tài)存在控制上的困難甚至難以實現(xiàn),顯然意義是不大的。這樣機器人的運動將會呈半圓狀起伏,如果能夠使的足端軌跡在觸地的部分保持平整就可以保持機器人的平穩(wěn)前進。 ,主動桿OB轉(zhuǎn)動時,從動桿端點D端畫出包括一段直線的閉合軌跡。這種運動方式比較靈活,即使每條腿上只有一個電機,也可以實現(xiàn)勻速直線運動,變速直線運動,這些對于學(xué)習(xí)控制都是很有實際意義的。當(dāng)壓力角愈小時,愈小,同時愈大。這時有最大值。只是覺得軌跡較理想,與地面的相對運動距離大,同等條件下運動速度快。 82176。 54176。 六足機器人三角步態(tài)的穩(wěn)定性分析:點A、B、C分別是六足機器人的左前腿、右中腿、左后腿在地面上的支撐點。擺動角度校核,由于外側(cè)可以自由旋轉(zhuǎn),只校核內(nèi)側(cè),先由腳部機構(gòu)圖譜抽象出分析簡圖,然后分析轉(zhuǎn)角極限 計算內(nèi)側(cè)最大擺動角圖設(shè)lCB,lCF之間的夾角為θ,根據(jù)實際情況0≤θ≤90176。 設(shè)計說明身體部分是一個載體,它把機器人的各個部分連接起來。