【正文】
對(duì)稱后,得到的解析式是; 3. 關(guān)于原點(diǎn)對(duì)稱 關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是; 關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是; 4. 關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180176。用二次函數(shù)解決最值問(wèn)題例1已知邊長(zhǎng)為4的正方形截去一個(gè)角后成為五邊形ABCDE(如圖),其中AF=2,BF=1.試在AB上求一點(diǎn)P,使矩形PNDM有最大面積.【評(píng)析】本題是一道代數(shù)幾何綜合題,把相似三角形與二次函數(shù)的知識(shí)有機(jī)的結(jié)合在一起,能很好考查學(xué)生的綜合應(yīng)用能力.同時(shí),也給學(xué)生探索解題思路留下了思維空間.例2 某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價(jià)x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如下表:x(元)152030…y(件)252010… 若日銷售量y是銷售價(jià)x的一次函數(shù). (1)求出日銷售量y(件)與銷售價(jià)x(元)的函數(shù)關(guān)系式; (2)要使每日的銷售利潤(rùn)最大,每件產(chǎn)品的銷售價(jià)應(yīng)定為多少元?此時(shí)每日銷售利潤(rùn)是多少元? 【解析】(1)設(shè)此一次函數(shù)表達(dá)式為y=kx+b.則 解得k=1,b=40,即一次函數(shù)表達(dá)式為y=x+40. (2)設(shè)每件產(chǎn)品的銷售價(jià)應(yīng)定為x元,所獲銷售利潤(rùn)為w元 w=(x10)(40x)=x2+50x400=(x25)2+225. 產(chǎn)品的銷售價(jià)應(yīng)定為25元,此時(shí)每日獲得最大銷售利潤(rùn)為225元. 【點(diǎn)評(píng)】解決最值問(wèn)題應(yīng)用題的思路與一般應(yīng)用題類似,也有區(qū)別,主要有兩點(diǎn):(1)設(shè)未知數(shù)在“當(dāng)某某為何值時(shí),什么最大(或最小、最省)”的設(shè)問(wèn)中,“某某”要設(shè)為自變量,“什么”要設(shè)為函數(shù);(2)問(wèn)的求解依靠配方法或最值公式,而不是解方程.?平時(shí)我們?cè)谔罄K時(shí),繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4 m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5 m處.繩子在甩到最高處時(shí)剛好通過(guò)他們的頭頂.已知學(xué)生丙的身高是1.5 m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如右圖所示)( )A.1.5 m B.1.625 m C.1.66 m D.1.67 m分析:本題考查二次函數(shù)的應(yīng)用答案:B知識(shí)點(diǎn)一、平面直角坐標(biāo)系 1,平面直角坐標(biāo)系在平面內(nèi)畫(huà)兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。知識(shí)點(diǎn)四,正比例函數(shù)和一次函數(shù) 正比例函數(shù)和一次函數(shù)的概念一般地,如果(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。 反比例函數(shù)的性質(zhì)反比例函數(shù)k的符號(hào)k0k0圖像 y O x y O x性質(zhì)①x的取值范圍是x0, y的取值范圍是y0;②當(dāng)k0時(shí),函數(shù)圖像的兩個(gè)分支分別在第一、三象限。如果需要畫(huà)出比較精確的圖像,可再描出一對(duì)對(duì)稱點(diǎn)A、B,然后順次連接五點(diǎn),畫(huà)出二次函數(shù)的圖像。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換?! ≌壤瘮?shù)是直線,圖象一定過(guò)圓點(diǎn),k的正負(fù)是關(guān)鍵,決定直線的象限,負(fù)k經(jīng)過(guò)二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過(guò)三個(gè)限,兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。知識(shí)點(diǎn)九、二次函數(shù)的性質(zhì) 二次函數(shù)的性質(zhì)函數(shù)二次函數(shù)圖像a0a0 y 0 x y 0 x 性質(zhì)(1)拋物線開(kāi)口向上,并向上無(wú)限延伸;(2)對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)是(,);(3)在對(duì)稱軸的左側(cè),即當(dāng)x時(shí),y隨x的增大而減??;在對(duì)稱軸的右側(cè),即當(dāng)x時(shí),y隨x的增大而增大,簡(jiǎn)記左減右增;(4)拋物線有最低點(diǎn),當(dāng)x=時(shí),y有最小值,(1)拋物線開(kāi)口向下,并向下無(wú)限延伸;(2)對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)是(,);(3)在對(duì)稱軸的左側(cè),即當(dāng)x時(shí),y隨x的增大而增大;在對(duì)稱軸的右側(cè),即當(dāng)x時(shí),y隨x的增大而減小,簡(jiǎn)記左增右減;(4)拋物線有最高點(diǎn),當(dāng)x=時(shí),y有最大值,二次函數(shù)中,的含義:表示開(kāi)口方向:0時(shí),拋物線開(kāi)口向上 0時(shí),拋物線開(kāi)口向下與對(duì)稱軸有關(guān):對(duì)稱軸為x=表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,)二次函數(shù)與一元二次方程的關(guān)系一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo)。反比例函數(shù)中反比例系數(shù)的幾何意義如下圖,過(guò)反比例函數(shù)圖像上任一點(diǎn)P作x軸、y軸的垂線PM,PN,則所得的矩形PMON的面積S=PMPN=。K0b0 y 0 x 圖像經(jīng)過(guò)一、二、四象限,y隨x的增大而減小b0 y 0 x 圖像經(jīng)過(guò)二、三、四象限,y隨x的增大而減小。知識(shí)點(diǎn)二、不同位置的點(diǎn)的坐標(biāo)的特征 各象限內(nèi)點(diǎn)的坐標(biāo)的特征 點(diǎn)P(x,y)在第一象限點(diǎn)P(x,y)在第二象限點(diǎn)P(x,y)在第三象限點(diǎn)P(x,y)在第四象限坐標(biāo)軸上的點(diǎn)的特征點(diǎn)P(x,y)在x軸上,x為任意實(shí)數(shù)點(diǎn)P(x,y)在y軸上,y為任意實(shí)數(shù)點(diǎn)P(x,y)既在x軸上,又在y軸上x(chóng),y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征點(diǎn)P(x,y)在第一、三象限夾角平分線上x(chóng)與y相等點(diǎn)P(x,y)在第二、四象限夾角平分線上x(chóng)與y互為相反數(shù)和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。C與拋物線交點(diǎn)為(0,6),(5,24).∴符合題意的x的范圍為1x0或Ox5.當(dāng)點(diǎn)M的橫坐標(biāo)滿足1xO或Ox5時(shí),∠MCO∠ACO.例 “已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(c,-2), 求證:這個(gè)二次函數(shù)圖象的對(duì)稱軸是x=3。 這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2. 二次函數(shù)的結(jié)構(gòu)特征:⑴ 等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵ 是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).二、二次函數(shù)的基本形式1. 二次函數(shù)基本形式:的性質(zhì):a 的絕對(duì)值越大,拋物線的開(kāi)口越小。[解答] (1)根據(jù)的圖象經(jīng)過(guò)點(diǎn)A(c,-2),圖象的對(duì)稱軸是x=3,得解得所以所求二次函數(shù)解析式為圖象如圖所示。(2)列表法把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列