freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新版初中二次函數(shù)知識點匯總-全文預覽

2025-07-15 03:03 上一頁面

下一頁面
  

【正文】 (1)求出日銷售量y(件)與銷售價x(元)的函數(shù)關系式; (2)要使每日的銷售利潤最大,每件產(chǎn)品的銷售價應定為多少元?此時每日銷售利潤是多少元? 【解析】(1)設此一次函數(shù)表達式為y=kx+b.則 解得k=1,b=40,即一次函數(shù)表達式為y=x+40. (2)設每件產(chǎn)品的銷售價應定為x元,所獲銷售利潤為w元 w=(x10)(40x)=x2+50x400=(x25)2+225. 產(chǎn)品的銷售價應定為25元,此時每日獲得最大銷售利潤為225元. 【點評】解決最值問題應用題的思路與一般應用題類似,也有區(qū)別,主要有兩點:(1)設未知數(shù)在“當某某為何值時,什么最大(或最小、最?。钡脑O問中,“某某”要設為自變量,“什么”要設為函數(shù);(2)問的求解依靠配方法或最值公式,而不是解方程.?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學生拿繩的手間距為4 m,距地面均為1m,學生丙、丁分別站在距甲拿繩的手水平距離1m、2.5 m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學生丙的身高是1.5 m,則學生丁的身高為(建立的平面直角坐標系如右圖所示)( )A.1.5 m B.1.625 m      C.1.66 m D.1.67 m分析:本題考查二次函數(shù)的應用答案:B知識點一、平面直角坐標系 1,平面直角坐標系在平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標系。而從不同的角度考慮可以添加出不同的條件,可以考慮再給圖象上的一個任意點的坐標,可以給出頂點的坐標或與坐標軸的一個交點的坐標等。(1)根據(jù)已知和結(jié)論中現(xiàn)有的信息,你能否求出題中的二次函數(shù)解析式?若能,請寫出求解過程,并畫出二次函數(shù)圖象;若不能,請說明理由。x2=30,又∵x1x2, ∴x2O,x1O,∵30A=OB,∴x2=3x1. ∴x1的符號開口方向頂點坐標對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值.向下X=h時,隨的增大而減?。粫r,隨的增大而增大;時,有最大值.4. 的性質(zhì):的符號開口方向頂點坐標對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值.向下X=h時,隨的增大而減??;時,隨的增大而增大;時,有最大值.三、二次函數(shù)圖象的平移 1. 平移步驟:方法一:⑴ 將拋物線解析式轉(zhuǎn)化成頂點式,確定其頂點坐標;⑵ 保持拋物線的形狀不變,將其頂點平移到處,具體平移方法如下: 2. 平移規(guī)律 在原有函數(shù)的基礎上“值正右移,負左移;值正上移,負下移”.概括成八個字“左加右減,上加下減”. 方法二:⑴沿軸平移:向上(下)平移個單位,變成(或)⑵沿軸平移:向左(右)平移個單位,變成(或) 四、二次函數(shù)與的比較從解析式上看,與是兩種不同的表達形式,后者通過配方可以得到前者,即,其中.五、二次函數(shù)圖象的畫法五點繪圖法:利用配方法將二次函數(shù)化為頂點式,確定其開口方向、對稱軸及頂點坐標,然后在對稱軸兩側(cè),:頂點、與軸的交點、以及關于對稱軸對稱的點、與軸的交點,(若與軸沒有交點,則取兩組關于對稱軸對稱的點).畫草圖時應抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,與軸的交點.六、二次函數(shù)的性質(zhì) 1. 當時,拋物線開口向上,對稱軸為,頂點坐標為.當時,隨的增大而減小;當時,隨的增大而增大;當時,有最小值. 2. 當時,拋物線開口向下,對稱軸為,頂點坐標為.當時,隨的增大而增大;當時,隨的增大而減?。划敃r,有最大值.七、二次函數(shù)解析式的表示方法1. 一般式:(,為常數(shù),);2. 頂點式:(,為常數(shù),);3. 兩根式:(,是拋物線與軸兩交點的橫坐標).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點式,但并非所有的二次函數(shù)都可以寫成交點式,只有拋物線與軸有交點,即時,拋物線的解析式才可以用交點式表示.二次函數(shù)解析式的這三種形式可以互化.八、二次函數(shù)的圖象與各項系數(shù)之間的關系 1. 二次項系數(shù)二次函數(shù)中,作為二次項系數(shù),顯然. ⑴ 當時,拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大; ⑵ 當時,拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大.總結(jié)起來,決定了拋物線開口的大小和方向,的正負決定開口方向,的大小決定開口的大小.2. 一次項系數(shù) 在二次項系數(shù)確定的前提下,決定了拋物線的對稱軸. ⑴ 在的前提下,當時,即拋物線的對稱軸在軸左側(cè);當時,即拋物線的對稱軸就是軸;當時,即拋物線對稱軸在軸的右側(cè).⑵ 在的前提下,結(jié)論剛好與上述相反,即當時,即拋物線的對稱軸在軸右側(cè);當時,即拋物線的對稱軸就是軸;當時,即拋物線對稱軸在軸的左側(cè).總結(jié)起來,在確定的前提下,決定了拋物線對稱軸的位置.的符號的判定:對稱軸在軸左邊則,在軸的右側(cè)則,概括的說就是“左同右異”總結(jié): 3. 常數(shù)項 ⑴ 當時,拋物線與軸的交點在軸上方,即拋物線與軸交點的縱坐標為正; ⑵ 當時,拋物線與軸的交點為坐標原點,即拋物線與軸交點的縱坐標為; ⑶ 當時,拋物線與軸的交點在軸下方,即拋物線與軸交點的縱坐標為負. 總結(jié)起來,決定了拋物線與軸交點的位置. 總之,只要都確定,那么這條拋物線就是唯一確定的.二次函數(shù)解析式的確定:根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點,選擇適當?shù)男问?,才能使解題簡便.一般來說,有如下幾種情況:1. 已知拋物線上三點的坐標,一般選用一般式;2. 已知拋物線頂點或?qū)ΨQ軸或最大(?。┲?,一般選用頂點式;3. 已知拋物線與軸的兩個交點的橫坐標,一般選用兩根式;4. 已知拋物線上縱坐標相同的兩點,常選用頂點式.九、二次函數(shù)圖象的對稱 二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點式表達 1. 關于軸對稱 關于軸對稱后,得到的解析式是; 關于軸對稱后,得到的解析式是; 2. 關于軸對稱 關于軸對稱后,得到的解析式是; 關于軸對稱后,得到的解析式是; 3. 關于原點對稱 關于原點對稱后,得到的解析式是; 關于原點對稱后,得到的解析式是; 4. 關于頂點對稱(即:拋物線繞頂點旋轉(zhuǎn)180176。 ②方程組只有一組解時與只有一個交點;③方程組無解時與沒有交點.(6)拋物線與軸兩交點之間的距離:若拋物線與軸兩交點為,由于、是方程的兩個根,故 13.二次函數(shù)與一元二次方程的關系:(1)一元二次方程就是二次函數(shù)當函數(shù)y的值為0時的情況.(2)二次函數(shù)的圖象與軸的交點有三種情況:有兩個交點、有一個交點、沒有交點;當二次函數(shù)的圖象與軸有交點時,交點的橫坐標就是當時自變量的值,即一元二次方程的根.(3)當二次函數(shù)的圖象與軸有兩個交點時,則一元二次方程有兩個不相等的實數(shù)根;當二次函數(shù)的圖象與
點擊復制文檔內(nèi)容
黨政相關相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1