【正文】
85. angular displacements 角位移 86. The electric motor 電機(jī) 87. transmission Linkage 傳輸連接 88. the cutting force 切削力 89. the static loads 靜態(tài)負(fù)荷 90. the dynamic loads 動(dòng)態(tài)載荷 91. the grinding wheel 砂輪 92. lubricating oil 潤(rùn)滑油 93. the cutting fluids 切削液 94. protective guards 防護(hù)裝置 95. the cutting tool 刀具 96. the range of feeds 進(jìn)給量 97. engine lathes 普通車床 98. turret lathes 六角車床 99. the boring machine 鏜床 100. the drilling machines 鉆床 101. the milling machines 銑床 102. the broaching machines 絞孔機(jī);拉床 103. the sawing machines 鋸床 104. the cylindrical grinder 外圓磨床 105. the centreless grinders 無(wú)心磨床 106. the surface grinders 平面磨床 107. the chemical milling 銑削 108. the ultrasonic machining 超聲波加工 109. a tool holder 刀架 110. a pound rest 復(fù)式刀架 111. the feed screw 絲桿 112. the feed rod 光桿 113. The feed box 進(jìn)給箱 114. power feed 進(jìn)給 115. the full depth 大切削深度 116. thread cutting 螺紋切削 117. a chasing dial 螺紋指示盤 118. the forward stroke 沖程 119. the return stroke 回程 120. the clapper box 擺動(dòng)刀架 121. the hydraulic shaper 液壓牛頭刨床 122. the universal machines 通用機(jī)械 123. universal joints 萬(wàn)向節(jié) 124. Tracer milling 仿形銑 125. the master pattern 模型 126. the acceleration of gravity 重力加速度 127. conducting material 導(dǎo)電材料 128. nonconducting material 絕緣材料 三、 將下列短語(yǔ)譯成漢語(yǔ) 1. Plane and spatial linkages(平面和空間連桿) 2. constrained kinematic chain/unconstrained kinematic chain(約束運(yùn)動(dòng)鏈 /非約束運(yùn)動(dòng)鏈) 3. closedloop linkage(閉環(huán)運(yùn)動(dòng)鏈) 4. fourbar linkage(四連桿機(jī)構(gòu)) 5. slidercrank (or crank and slider) mechanism(曲柄滑塊機(jī)構(gòu)) 6. internal bustion engine(內(nèi)燃機(jī)) 7. the kinematic analysis of mechanisms(機(jī)構(gòu)運(yùn)動(dòng)分析) 8. degree of freedom of the mechanism(機(jī)構(gòu)自由度) 9. kinematic analysis process /kinematic synthesis process(運(yùn)動(dòng)分析步驟 /運(yùn)動(dòng)合成步驟) 10. input angular velocity(輸入角速度) 11. input angular acceleration(輸入角加速度) 12. automatic packaging machinery(自動(dòng)包裝機(jī)) 13. camcontour dimensions/camfollower diameters(凸輪輪廓尺寸 /凸輪從動(dòng)件直徑) 14. mechanical analog puter(機(jī)構(gòu)模擬計(jì)算機(jī)) 15. deadcenter position(死點(diǎn)位置) 16. crankrocker linkage/doublerocker linkage/doublecrank (draglink) linkage(曲柄搖桿機(jī)構(gòu) /雙搖桿機(jī)構(gòu) /雙曲柄機(jī)構(gòu)) 17. maximum force ponent/ resulting output force or torque(最大的力量組成 /輸出的最大力或力矩) 18. output motion variables/input motion variable(輸出運(yùn)動(dòng)變量 /輸入運(yùn)動(dòng)變量) 19. absolute angular positions(絕對(duì)角位置) 20. velocity polygon method(速度的多邊形的方法) 21. instantaneous center method/instant center method(瞬心法 /即時(shí)瞬心法) 22. inertiaforce analysis of mechanisms and machines(機(jī)構(gòu)和機(jī)器的慣性力分析) 23. one and the same coordinate system /inertia frame of reference(慣性參考系) 24. systematic design of mechanisms(機(jī)械設(shè)計(jì) 的系統(tǒng) ) 25. camcontour dimensions/camfollower diameters(凸輪輪廓尺寸 /凸輪從動(dòng)件直徑) 26. disk or plate translating (twodimensional or planar) 盤形傳動(dòng)凸輪(兩維的,即平面的) 27. cylindrical (threedimensional or spatial) cams 圓柱形凸輪(三維的,即空間的)機(jī)構(gòu) 28. a radial (inline) translating roller follower 一個(gè)對(duì)心直動(dòng)滾子從動(dòng)件 29. a constant angular velocity ratio 旋轉(zhuǎn)角速度的比例 30. a constant torque ratio 一個(gè)恒轉(zhuǎn)矩比 31. Nonlinear angular velocity ratios 非線性角速度比率 32. the parallel helical gear 平行斜齒輪 33. the crossed helical gear 交叉斜齒輪 34. the straight bevel gear 直錐齒輪 35. the spiral bevel gear 弧齒錐齒輪 36. the skew bevel gear 大角度斜交錐齒輪 37. the hexagon head screws 六角頭螺釘 38. the fillister head screws 槽頭螺釘 39. the flat head screws 平頭螺釘 40. the hexagon socket head screws 內(nèi)六角沉頭螺釘。 8. When a connection is desired which can be disassembled without destructing the parts assembled and which is strong enough to resist both external tensile load and shear load, or a bination of these, then the simple bolted joint using hardened washers is a good solution. 當(dāng)想要一個(gè)可以被拆開又不破壞被聯(lián)接零件的聯(lián)接時(shí),而且這個(gè)聯(lián)接又要有足夠的強(qiáng)度以承受外拉力和剪力或這兩種力的結(jié)合,使用淬火墊圈的簡(jiǎn)單螺栓聯(lián)結(jié)是一個(gè)很好的方法。如果 構(gòu)件中的某一構(gòu)件仍保持固定而使任一運(yùn)動(dòng)到達(dá)一新的位置而不會(huì)使其他各個(gè)構(gòu)件運(yùn)動(dòng)到一個(gè)確定的預(yù)期的位置上的話,則該系統(tǒng)裝置是一個(gè)非約束運(yùn)動(dòng)鏈。 it implies smooth operation, in which a maximum force ponent is available to produce a force or torque in an output member. Although the resulting output force or torque is not only a function of the geometry of the linkage, but is generally the result of dynamic or inertia force, which are often several times as large as the static force. For the analysis of lowspeed operations or for an easily obtainable index of how any mechanism might run, the concept of the transmission angle is extremely useful. During the motion of a mechanism, the transmission angle changes in value. A transmission angle of 0 degree may occur at a specific position, on which the output link will not move regardless of how large a force is applied to the input link. In fact, due to friction in the joints, the general rule of thumb, is to design mechanisms with transmission angle of larger than a specified value. Matrixbased definitions have been developed which measure the ability of a linkage to transmit motion. The value of a determinant (which contains derivatives of output motion variables with respect to an input motion variable for a given linkage geometry[2] ) is a measure of the movability of the linkage in a particular position. ( 除了具備關(guān)于構(gòu)件回轉(zhuǎn)范圍的知識(shí)之外,還要具備如何使機(jī)構(gòu)在制造之前就能 “ 運(yùn)轉(zhuǎn) ”的良好措施,那將是很有用的。 ) 6. A kinematician defined kinematics as the study of the motion of mechanisms and methods of creating them. The first part of this definition deals with kinematic analysis. Given a certain mechanism, the motion characteristics of its ponents will be determined by kinematic analysis. The statement of the tasks of analysis contains all principal dimensions of the mechanism, the interconnections of its links, and the specification of the input motion or method of actuation. The objective is to find the displacements, velocities, accelerations, shock or jerk (second acceleration), and perhaps higher accelerations of the various members, as well as the paths described and motions performed by certain elements. In short, in kinematic analysis we det