【正文】
CC結(jié)構(gòu); Pb的熔點(diǎn)為 328176。是否可以連續(xù)軋制?如果不能,應(yīng)采取什么措施才能使之軋制成薄板?(已知 Ti的熔點(diǎn) 1672176。可通過(guò)多次正火或擴(kuò)散退火消除 . 正火組織 帶狀組織 54 晶粒大小的控制。 形成條件: 正常晶粒長(zhǎng)大過(guò)程被分散相粒子 、 織構(gòu) 或表面熱蝕溝 等 強(qiáng)烈阻礙 ,能夠長(zhǎng)大的晶粒數(shù)目較少,致使晶粒大小相差懸殊。 39 黃銅再結(jié)晶后晶粒的長(zhǎng)大 580186。 固態(tài)相變 再結(jié)晶 30 再 結(jié) 晶 溫 度 recrystallization temperature 定義 1: 冷變形金屬開(kāi)始進(jìn)行再結(jié)晶的 最低溫度 。 0 100 200 300 400 500oC 450oC 400oC 350oC 300oC 時(shí)間 /min. 剩余應(yīng)變硬化分?jǐn)?shù)(1R) 同一變形度的 Fe在不同溫度下的回復(fù) 回復(fù)是一個(gè)馳豫過(guò)程 (relaxation process) 17 ? 在回復(fù)階段,金屬組織變化不明顯,其強(qiáng)度、硬度略有下降,塑性略有提高,但內(nèi)應(yīng)力、電阻率等顯著下降。 ( b)經(jīng)過(guò) 580186。這時(shí)金屬處于 一種不穩(wěn)定狀態(tài) 。 D:密度 density: 密度在再結(jié)晶階段急劇增加,主要是由于此時(shí)位錯(cuò)密度顯著降低造成的 。 ? 由于位錯(cuò)運(yùn)動(dòng)使其由冷塑性變形時(shí)的無(wú)序狀態(tài)變?yōu)榇怪狈植迹纬蓙喚Ы?,這一過(guò)程稱(chēng) 多邊形化 polygonization。 27 再結(jié)晶動(dòng)力學(xué) 再結(jié)晶體積分?jǐn)?shù) vs. 時(shí)間 長(zhǎng)大速率。 3 合金元素和雜質(zhì) : 增加儲(chǔ)存能 , 阻礙晶界移動(dòng) , 有利于晶粒細(xì)化 。 (4)晶粒位向差 。 它使鋼產(chǎn)生各向異性,在制定加工工藝時(shí),應(yīng)使流線(xiàn)分布合理,盡量與拉應(yīng)力方向一致。 60 金屬經(jīng)過(guò)塑性變形后 回復(fù) 加工硬化 殘余應(yīng)力 √ ? 退化處理 再結(jié)晶 晶粒長(zhǎng)大 特點(diǎn) 特點(diǎn) 晶粒形核和長(zhǎng)大 再結(jié)晶溫度 長(zhǎng)大特點(diǎn) 本章小結(jié) 61 Laws of recrystallization There are several, largely empirical laws of recrystallization: Thermally activated. The rate of the microscopic mechanisms controlling the nucleation and growth of recrystallised grains depend on the annealing temperature. Arrheniustype equations indicate an exponential relationship. 62 Critical temperature. Following from the previous rule it is found that recrystallization requires a minimum temperature for the necessary atomic mechanisms to occur. This recrystallization temperature decreases with annealing time. Critical deformation. The prior deformation applied to the material must be adequate to provide nuclei and sufficient stored energy to drive their growth. 63 Laws of recrystallization(cont) There are several, largely empirical laws of recrystallization: Deformation affects the critical temperature. Increasing the magnitude of prior deformation, or reducing the deformation temperature, will increase the stored energy and the number of potential nuclei. As a result the recrystallization temperature will decrease with increasing deformation. 64 Initial grain size affects the critical temperature. Grain boundaries are good sites for nuclei to form. Since an increase in grain size results in fewer boundaries this results in a decrease in the nucleation rate and hence an increase in the recrystallization temperature Deformation affects the final grain size. Increasing the deformation, or reducing the deformation temperature, increases the rate of nucleation faster than it increases the rate of grow