【摘要】不等關(guān)系與不等式第一課時(shí)問(wèn)題提出t57301p2???????,表示等量關(guān)系的式子叫做等式,那么“不等式”的含義如何理解?表示不等關(guān)系的式子叫做不等式.,既有相等關(guān)系,又存在著大量的不等關(guān)系.例如,兩點(diǎn)之間線段最短,三角形兩邊之和大于第三邊、兩邊之差小于第三邊,等等.人們還經(jīng)常用長(zhǎng)與短、高與矮、輕與重、大與小、不超過(guò)或
2025-11-09 12:17
【摘要】3.1不等關(guān)系與不等式3.不等式與大小比較學(xué)習(xí)目標(biāo).2.會(huì)用差值法比較兩實(shí)數(shù)的大?。n堂互動(dòng)講練知能優(yōu)化訓(xùn)練3.不等式與大小比較課前自主學(xué)案課前自主學(xué)案溫故夯基1.在三角形中任意兩邊之和_____第三邊,任意兩邊之差_____第三邊.
2025-01-06 16:34
【摘要】不等關(guān)系與不等式第三課時(shí)t57301p2???????1.兩個(gè)實(shí)數(shù)大小關(guān)系的比較原理知識(shí)梳理a-b>0a>b?a-b=0a=b?a-b<0a<b?(1)a>bb<a(對(duì)稱(chēng)性)?(2)a>b,b>ca>c;
2025-11-08 19:44
【摘要】不等關(guān)系與不等式第二課時(shí)問(wèn)題提出?a-b>0a>b?a-b=0a=b?a-b<0a<b?“差比法”比較兩個(gè)代數(shù)式大小的一般步驟如何?作差→變形→判斷符號(hào)是不夠的,為了深入研究各種背景下的不等關(guān)系,我們必須建立相關(guān)的不等式理論,這是我們需要進(jìn)一
2025-11-08 12:02
【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號(hào)成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-04 05:05
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類(lèi)討論,那么如何討論呢?對(duì)含參一元二次不等式常用的分類(lèi)方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類(lèi),即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對(duì)二次項(xiàng)系數(shù)進(jìn)行分類(lèi)討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-04-04 05:10