【正文】
(a) 無補(bǔ)償 (b) 脈沖寬度補(bǔ)償值 = (c) 脈沖寬度補(bǔ)償值 = (d) 脈沖寬度補(bǔ)償值 = (e) 脈沖寬度補(bǔ)償值 = 圖 4。然而,在數(shù)字電機(jī)驅(qū)動(dòng)和控制系統(tǒng)中,電壓調(diào)節(jié)是通過脈沖寬度調(diào)制,即通過調(diào)節(jié)占空比脈沖電壓,它是與脈沖寬 T 在一個(gè)脈寬調(diào)制的周期 Tpwm。有 8 個(gè)開關(guān)的三相電壓源逆變器的六個(gè) IGBT 組合狀態(tài),并在死區(qū)時(shí)間中,有相應(yīng)的 6 個(gè)當(dāng)前結(jié)合態(tài)對(duì)應(yīng)三相電流 IA, IB 和 IC 根據(jù)自己的極性: (1) ia 0, ib 0 and ic 0。 關(guān)鍵詞:指數(shù)條款 死區(qū)補(bǔ)償, SVPWM的,永磁同步電機(jī), TMS320F2812 一, 引言 由于永磁同步電機(jī)( PMSM 的)有很多優(yōu)勢(shì),例如,高功率密度,高效率,高慣性力矩比,高可靠性等 [1],因此,永磁同步電機(jī)驅(qū)動(dòng)系統(tǒng)已被廣泛應(yīng)用于許多應(yīng)用領(lǐng)域,尤其是在最近幾年應(yīng)用在混合動(dòng)力( HEV)用電動(dòng)汽車上 [2] [6]。為了改善目前的波形,并減少轉(zhuǎn)矩脈動(dòng),提出了一種 SVPWM的死區(qū)時(shí)間補(bǔ)償方法。在圖 1, Q1, Q2, Q3, Q4, Q5 和 Q6 有 6逆變器的 IGBT 的三相電壓源,和 D1, D2 和 D3, D4, D5 和 D6 中的反向平行二極管。 本文,該扇形的數(shù)目取決于電流矢量角 φ,它可以通過計(jì)算 α 和 β軸 定子組件的電流矢量來得到。圖 3顯示了三相定子電流實(shí)驗(yàn)波形和不同的脈沖寬度補(bǔ)償值對(duì)定子電流矢量部門數(shù)的影響,圖 4顯示了相應(yīng)的頻譜。因此,建議死區(qū)補(bǔ)償?shù)姆椒ㄊ钦_和可行的。可以看出,對(duì)于 iαiβ 坐標(biāo)系的不同扇區(qū),相應(yīng)的補(bǔ)償值是不同的。 (4) ia 0, ib 0 and ic 0。在持續(xù)死區(qū)時(shí)間中,相都相同的兩個(gè)開關(guān)裝置處于關(guān)閉狀態(tài)。 (4) ia0, ib0 and ic0。另外,該方法通過軟件可以實(shí)現(xiàn)完全沒有任何額外的硬件設(shè)計(jì)。 根據(jù)三相電流ia,ib,ic的 極性 , 兩相靜止坐標(biāo)系 iα iβ 可分為 6個(gè)部分: I(1),II(2),III(3),IV(4),V(5) 和VI(6). 對(duì)于兩相靜止坐標(biāo)系 iα iβ 每個(gè)部分,有相應(yīng)的死區(qū)時(shí)間補(bǔ)償規(guī)則。這是一個(gè)特殊的 DSP 控制的電機(jī),具有許多優(yōu)點(diǎn),并能實(shí)現(xiàn)高性能的電機(jī)控制,例如磁場(chǎng)定向控制(磁場(chǎng)定向控制)和 DTC(直接轉(zhuǎn)矩控制)。 最后的實(shí)驗(yàn)是建立完善了基于 DSP TMS320F2812的驅(qū)動(dòng)永磁同步電動(dòng)機(jī)作平臺(tái), 其結(jié)果表明,該方法可以改善目前的失真,降低扭矩,尤其是當(dāng)脈沖寬度補(bǔ)償值等于約 。 三.實(shí)驗(yàn) 為了測(cè)試和驗(yàn)證所提出的停滯時(shí)間補(bǔ)償?shù)?SVPWM方法,實(shí)驗(yàn)建立了。拓?fù)鋱D的永磁同步電機(jī)驅(qū)動(dòng)系統(tǒng) 零交叉點(diǎn)或每個(gè)階段極性電流是非常重要和難以檢測(cè)的。為了提高電動(dòng)機(jī)的電流波形,降低電機(jī)轉(zhuǎn)矩脈動(dòng),幾個(gè)死區(qū)時(shí)間補(bǔ)償 的 SVPWM方法進(jìn)行了研究和系統(tǒng)在駕駛汽車 [7][11]. 大部分的補(bǔ)償辦法是根據(jù)偏差理論的平均電壓。Deadtime Compensation of SVPWM Based on DSP TMS320F2812 for PMSM Song Xuelei*, Wen Xuhui, Guo Xinhua, and Zhao Feng Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, Email: Abstract—The deadtime effect in a threephase voltage source inverter can result in voltage losses, current waveform distortion and torque pulsation. In order to improve the current waveform and decrease the torque pulsation, this paper proposes a deadtime pensation method of SVPWM. This method divides the iα iβ plane into six sectors and pensates the deadtime of SVPWM according to the sector number of stator current vector determined by the α and βaxis ponents of the stator current vector in the twophase static reference frame. In addition, this method can be implemented entirely through software without any extra hardware. Finally experiments based on DSP TMS320F2812 are established and made, and the experiment results indicate that the proposed method is correct and feasible. Index Termsdeadtime pensation,SVPWM,PMSM,TMS320F2812 I. INTRODUCTION Because the permanent mag synchronous machine (PMSM) has a lot of advantages such as high power density, high efficiency, high torque to inertia ratio, high reliability, et al[1],therefore, the PMSM driving system have been widely used in many application fields, especially in hybrid electric vehicles (HEV) in recentyears[2][6]. In the PMSM driving system, the threephase voltage source inverter is usually adopted and the IGBT and MOSFET are also used because of their fast switchingfrequency. For the threephase voltage source inverter, in order to avoid the short circuit of the dc link occurring when the two switch devices of the same phase are turned on simultaneously, the deadtime is usually inserted in the gate driving switch signals. During the duration of the deadtime, both of the two switch device of the same phase are turned off. The existing of the deadtime will lead to a series of deadtime effect problems such as voltage losses, current waveform distortion and torque pulsation, especially under the condition of small current or low speed. SVPWM (Space Vector Pulse Width Modulation) is a popular modulation method for threephase voltage source inverter in motor driving system. In order to improve the current waveform of motors an