【摘要】第一部分:三個重要的放縮一、放縮后轉化為等比數(shù)列。例1.滿足:(1)用數(shù)學歸納法證明:(2),求證:二、放縮后裂項迭加例2.數(shù)列,,其前項和為求證:(1)用表示出(2)若在上恒成立,求的取值范圍(3)證明:
2025-06-16 12:41
【摘要】不等式的證明【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)∵a0,b>
2024-11-06 13:38
【摘要】第一篇:證明不等式方法 不等式的證明是高中數(shù)學的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節(jié)通這一些實例,歸納整理證明不等式時常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2024-10-29 04:53
【摘要】1高考數(shù)學備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數(shù)列通項的結構,深入剖析其特征,抓住其規(guī)律進行恰當?shù)胤趴s;其放縮技巧主要有以下幾種:一、裂項放縮
2024-11-08 14:02
【摘要】第一篇:放縮法、反證法證明不等式10 放縮法、反證法證明不等式 教學目標: 掌握放縮法和反證法證明不等式教學難點: 放縮法和反證法教學過程: 一、簡要回顧已經學習過的幾種不等式證明的方法 ...
2025-10-18 23:14
【摘要】淺談放縮法在不等式證明中的應用 篇一:《放縮法在不等式的應用》論文 放縮法在不等式的應用 所謂放縮法確實是利用不等式的傳遞性,對照證標題的進展合情合理的放大和縮小的過程,在使用放縮法證題時要...
2025-03-26 01:26