freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中物理分類知識總結(jié)(專業(yè)版)

2025-01-03 17:02上一頁面

下一頁面
  

【正文】 ( 3)做 功快慢的描述問題:做功快慢程度引入功率來描述,其定義式為: P=W/t 功率的計算有時還可利用形如 P=Fv ( 4)做功意義的理解問題:做功意味著能量的轉(zhuǎn)移與轉(zhuǎn)化,做多少功,相應就有多少能量發(fā)生轉(zhuǎn)移或轉(zhuǎn)化。 例 如圖 2 所示,長為 L、質(zhì)量為 m1 的小船停 在靜水中。 ( 1)表述:系統(tǒng)如不變外力,或所受外力的合力為零,則其總動量將保持不變,即 如:∑ F=0 則△ P=0 ( 2)常用的表達方式 由于動量守恒定律比較多地被應用于由兩個物體所組成的系統(tǒng)中,所以在通常情 況下表達形式為: m1v10+m2v20=m1v1+m2v2 ( 3)關(guān)于動量守恒的條件 根據(jù)動量定理可知;合外力的沖量等于動量的變化,因此,欲使動量守恒,必須使合外力的沖量為零,考慮到合外力的沖量不等于合外力與其作用時間的乘積,而令時間為零是沒有任何研究的必要(同一時刻的動量當然是同一值),所以動量守恒的條件通常表述為:如果系統(tǒng)不受外力或所受外力的合力為零。 分析:此題所求實質(zhì)是星體做橢圓運動的周期, 僅憑 中學物理知識難以解決,但再利用題中信息所示原理,則可方便求解。 F=2 21rmGm (2)定律的適用條件:用于計算引力大小的萬有引力公式一般只適用于兩質(zhì)點間引力大小的計算,如果相互吸引的雙方是標準的均勻球體,則可將其視為質(zhì)量集中于球心的質(zhì)點。 ( 2)均落在斜面上,于是有 y1/x1=y2/x2,可得 x1 : x2=1 : 4,故選 C。正因為如此:當物體所受到的合外力方向與其速度方向平行時,物體將做直線運動;當物體所 受到的合外力方向與其速度方向不平行時,物體將做曲線運動。但若將定律直接應用于各個部分加速度并不完全相同的某系統(tǒng)時,一方面定律的表現(xiàn)形式要相應修正為 ?iF =? iiam ;另一方面必須對定律的修正形式有一個正確的,同時也應該是更為深刻的理解: mi為系統(tǒng)各部分的質(zhì)量, ?iF為系統(tǒng)各部分所受到的來自系統(tǒng)外部物體所施加的力的矢量和,而 aI 則分別為系統(tǒng)各部分的不盡相同的加速度 . 另外需要說明的是:盡管對于牛頓定律應用于加速度 各不相同的系統(tǒng)時的修正形式,中學物理教學并未提出要求,但實際上我們確實會碰到大量的用“隔離法”(應用牛頓定律的原形)求解時非常復雜,而用“整體法”(應用牛頓定律的修正形式)則很簡單的物理習題。 6+ 21 a對于 勻變速直線運動來說,其速度隨時間變化的υ~ t 圖線如圖 1 所示,對于該圖線,應把握的有如下三個要點。即 ?F =0→ ????? ???? .0,0yxFF 作為基本的應用方法,正交分解法的應用步驟為: ①確定研究對象; ②分析受力情況; ③建立適當坐標; ④列出平衡方程 . ( 2)合成(分解)法:如果物體受到力 F 和 if ( i=1, 2,?, n)的作用而處于平衡狀態(tài),則在利用平衡條件處理各個力之間的關(guān)系時可分別采用以下兩種方法。這三種常見的產(chǎn)生條件及方向特征如下表所示: 力 產(chǎn)生條件 方向特征 重力 物體處在地球附近 總是豎直向下 彈力 物體與其他物體接觸 接觸處因擠、壓、拉等作用而產(chǎn)生彈性形變 總與接觸面垂直 總與形變方向相反 摩擦力 物體與其他物體接觸 接觸處因擠、壓、拉等作用而產(chǎn)生彈性形變 相對于接觸的物體有沿切線方向的相對運動(或相對運動趨勢) 總與接觸面平行 總與相對運動或相對運動趨勢 方向相反 3.物體受力情況的分析 ( 1)物體受力情況分析的理解:把某個特定的物體在某個特定的物理環(huán)境中所受到的力一個不漏,一個不重地找出來,并畫出定性的受力示意圖。對于抽象的力概念,通??梢杂脠D示的方法使之 形象化:以有向線段表示抽象的力。 ( 4)獨立性:力的作用效果是表現(xiàn)在受力物體上的,“形狀變化” 或“速度變化”。把平衡與運動建立起聯(lián)系應該說是對平衡概念的準確理解。 由圖便很容易得出結(jié)論:當拉力 F 與水平面夾角為 α =tg— 1μ 時,將取得最小值 Fmin=mgsinα =21 ???mg 二 、 直線運動 復習要點 1.機械運動,參照物,質(zhì)點、位置與位移,路程,時刻與時間等概念的理解。第 2s 和第 7s 內(nèi)位移分別為 和 ,則其運動加速度 a=____________m/s2. 分析:若機械地運動勻變速直線運動的基本規(guī)律,可以列出如下方程 ( 0? 三、運動和力 復習要點 1.牛頓第一定律、物體的慣性 2.牛頓第二定律 3.牛頓第三定 律 4.牛頓運動定律的應用:已知運動求受力;已知受力求運動 5.超重與失重 二、難點剖析 1.對牛頓第一定律的理解 ( 1)內(nèi)容:一切物體都將保持靜止狀態(tài)或勻速直線運動狀態(tài),直到有外力迫使其改變運動狀態(tài)為止。 分析:通常會有同學作出如下分析。 圖 — 1 圖 — 2 4.兩類典型的曲線運動的分析方法比較 ( 1)對于平拋運動這類“勻變速曲線運動”,我們的分析方法一般是“在固定的坐標1P1υ3△ υυ 32υ△υ △ υ 023P△2P 3 2△ PP 1P△0υP 0△ υ υ△2υυ 3(a)θθ1υO(shè)θP 1△(c)2△ P 3P△(b)2 3υ 0 υ 1△系內(nèi)正交分解其位移和速度”,運動規(guī)律可表示為 ???????2021,gtytx ? ; ??? ?? .,0gtyx? ?? ( 2)對于勻速圓周運動這類“變變速曲線運動”,我們的分析方法一般是“在運動的坐標系內(nèi)正交分解其力和加速度”,運動規(guī)律可表示為 ????????????.,022 ???? mmrrmmaFFmaF向向法切切 三、典型例題 例 1.船在靜水中的速度為υ,流水的速度為 u,河寬為 L。當擊球點高度為 h 時,擊球速度 圖 — 6 為υ時,恰好不會觸網(wǎng),恰好不會出界,其運動軌跡分別如圖 9— 7 中的( a)、( b)、( c)所示。 由于地球自轉(zhuǎn)緩慢,所以大量的近似計算中忽略了自轉(zhuǎn)的影響,在此基礎(chǔ)上就有:地球表面處物體所受到的地球引 力近似等于其重力,即 2RGmM≈ mg 這是一個分析天體圓運動問題時的重要的輔助公式。 ( 2)方向恒定的變力的沖量計算。 解答:由于平拋運動的物體啼受重力作用所以重力的沖量應等于相應過程中動量的變化量,于是有 s/k g m10m g tP s33 ?? 第? 方向豎直向下。 涉及到功的概念的基本問題,往往會從如下四個方面提出。其表達式為: mghEPG?。 掌握機械能守恒定律、理解機械能守恒的條件,并能運用機械能守恒定律分析與解決相關(guān)的力學問題。 三、典型例題 例 質(zhì)量 m=1kg的物體以 v0=10m/s水平拋出空氣陰力不計,取 g=10m/s2,則在第 3s內(nèi)動量的變化量如何? 分析:要先求第 3s 的始末速度,始末動量,然后再求第 3s 內(nèi)的始末動量,這樣將會很復雜。對于質(zhì)量不確定的物體來說,合外力決定看其動量將變多快;合外力的沖量將決定看基動量將變多少。 如圖所示,在緯度為 ? 的地表處, 物體所受的萬有引力為 F=2RGmM 而物體隨地球一起繞地軸自轉(zhuǎn)所常的向心力為 F 向 =mRcos? ( 2)若擊球點的高度小于某個值,那么無論水平擊球的速 度多大,球不是觸網(wǎng)就是越界,試求出這個高度。 ( 4)速度和動量變化特征的比較。問: ( 1)水平作用力 F 作用在 B 上至少多大時, A、 B 之間能發(fā)生相對滑動? ( 2)當 F=30N 或 40N 時, A、 B 加速度分別各為多少? 圖 4 圖 5 分析: AB 相對滑動的條件是: A、 B 之間的摩擦力達到最大靜摩擦力,且加速度達到A可能的最大加速度 a0,所以應先求出 a0. 解:( 1)以 A為對象,它在水平方向受力如圖 8— 5( a)所示,所以有 mAa0=μ 2mBg-μ 1( mA+mB) g, a0=ABAB m mmm )(12 ?? ?? g= 15 ??? 10m/s2=32m/s2 再以 B 為對象,它在水平方向受力如圖 8— 5( b)所示,加速度也為 a0,所以有 F- F2=mBa0, F=f2+mBa0= 5 10N+5 32 N=. 即當 F 達到 時, A、 B 間已達到最大靜摩擦力 .若 F 再增加, B 加速度增大而 A的加速度已無法增 大,即發(fā)生相對滑動,因此, F 至少應大于 . ( 2)當 F=30N,據(jù)上面分析可知不會發(fā)生相對滑動,故可用整體法求出共同加速度 aA=aB=BA mmfF?? 1 = 515 10)515( ? ???? m/s2=還可以進一步求得 A、 B 間的靜摩擦力為 (同學們不妨一試) . 當 F= 40N 時, A、 B 相對滑動,所以必須用隔離法分別求 aA、 aB,其實 aA不必另求, aA=a0=32 m/s2. 以 B 為對象可求得 aB=BmfF 2? = 53040? m/s2=2m/s2. 從上可看出,解決這類問題關(guān)鍵是找到情況發(fā)生變化的“臨界條件” .各種問題臨界條件不同,必須對具體問題進行具體分析。 υ0s/tυO(shè)υ(a)tυO(shè)s/t(b)υt 圖 3 考慮到υ是質(zhì)點通過 A、 B中點時的瞬時速度,因此,圖線上縱坐標值為υ的點的前、后兩段線下的“面積”應相等;另外考慮到 s/t 實際上是這段時間內(nèi)的平均速度,對于勻變速直線而言,數(shù)值上又等于時間中點的瞬時速度。 t0tg θ=aυ 0υS 解:由題意有 20 21 gtt??=95 物體受到共面的力的作用而處地平衡狀態(tài),若表示這些力的有向線 段彼此間不平行,則它們必將共點。通常作力的分解時所加的限制有兩種:按照力的作用效果進行分解,按照所建立的直角坐標將力作正交分解。而所謂的力的瞬時性特征,指的是力與其作用效果是在同一瞬間產(chǎn)生的。 ( 1)物質(zhì)性:由于力是物體對物體的作用,所以力概念是不能脫離物體而獨立存在的,任意一個力必然與兩個物體密切相關(guān),一個是其施力物體,另一個是其受力物體。 ( 3)物體受力情況分析的依據(jù):在具體的受力分 析過程中,判斷物體是否受到某個力的依據(jù)通常有如下三個。 ( 4)多邊形(三角形)法。 圖 1 4.豎直上拋運動的規(guī)律與特征。 解: υ t=21 at2+s. 而由其判別式△ =υ 2- 2as= - 56< 0便可知: t 無實根 .對應的物理意義實際上就是:人不能追上車 . 例 5. 小球 A自 h 高處靜止釋放的同時,小球 B 從其正下方的地面處豎直向上拋出 .欲使兩球在 B 球下落的階段于空中相遇,則小球 B 的初速度應滿足何種條件? 分析:選準如下兩個臨界狀態(tài):當小球 B 的初速度為υ 1 時,兩球恰好同時著地;當小球 B 的初速度為υ 2 時,兩球相遇點恰在 B 球上升的最高點處,于是分別列方程求解 解: h=21g(2g1?)2, h-g222? =21 g(g2?)2 由此可分別得到 υ 1= gh21<υ 0< gh 例 6. 質(zhì)點做豎直上拋運動,兩次經(jīng)過 A 點的時間間隔為 t1,兩次經(jīng)過 A 點正上方的 B點的時間間隔為 t2,則 A與 B 間距離為 __________. 分析:利用豎直上拋運動的“對稱特征”可給出簡單的解答 解:由豎直上拋運 動的“對稱”特征可知:質(zhì)點從最高點自由落至 A、 B 兩點所經(jīng)歷時間必為 21 t1 和 21 t2,于是直接可得 AB =21 g( 21 t1)2- 21 g( 21 t2)2=81 g( 21t - 22t ) 例 7.質(zhì)點做勻減速直線運動,第 1s內(nèi)位移為 10m, 停止運動前最后 1s 內(nèi)位移為 2m,
點擊復制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1