【摘要】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2025-11-03 16:44
【摘要】高考試題中的平面向量問題的歸類平面向量是新教材中高一的必學(xué)內(nèi)容,是近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念之一,它是溝通代數(shù)、幾何與三角函數(shù)的一種工具,有著極其豐富的實際背景,它包括向量的概念和運算。向量的坐標表示,定比分點及數(shù)量積。舊教材中,在解析幾何、復(fù)數(shù)中涉及到平面向量的問題,只是對一個概念的介紹。而現(xiàn)在的教學(xué)大綱要求理解平面向量
2025-12-31 16:31
【摘要】§2.平面向量的正交分解及坐標表示【學(xué)習(xí)目標、細解考綱】1、理解平面向量的正交分解。2、聯(lián)系直角坐標系,研究向量正交分解的坐標運算。【知識梳理、雙基再現(xiàn)】1、平面向量的正交分解把一個向量分解為_____________,叫做把向量正交分解。2、向量的坐標表示在平面直角坐標系中,分別取與x軸、
2025-11-23 08:37
【摘要】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【摘要】高考數(shù)學(xué)必修五數(shù)列練習(xí)題精選
2025-07-21 17:19
【摘要】新課標人教版課件系列《高中數(shù)學(xué)》必修4《平面向量-復(fù)習(xí)》制作:曾毅審校:王偉知識結(jié)構(gòu)要點復(fù)習(xí)例題解析鞏固練習(xí)平面向量復(fù)習(xí)平面向量復(fù)習(xí)知識結(jié)構(gòu)知識要點例題解析鞏固練習(xí)課外作業(yè)平
2025-11-02 06:00