【摘要】線性代數(shù)證明題1.設(shè)是非零的四維列向量,為的伴隨矩陣,已知的基礎(chǔ)解系為,證明是方程組的基礎(chǔ)解系.,且,則必是可逆矩陣。3.均是階矩陣,為階單位矩陣,若,證明:4.設(shè)3級(jí)方陣滿足,證明:可逆,并求其逆.5.設(shè)是一個(gè)級(jí)方陣,且,證明:存在一個(gè)級(jí)可逆矩陣使的后行全為零.6.設(shè)矩陣,且,證明:的行向量組線性無(wú)關(guān).7.,證明:是冪等矩陣的充要條件是,試證:也是對(duì)稱矩陣
2025-08-05 15:25
【摘要】微分中值定理的證明題1.若在上連續(xù),在上可導(dǎo),,證明:,使得:。證:構(gòu)造函數(shù),則在上連續(xù),在內(nèi)可導(dǎo),且,由羅爾中值定理知:,使 即:,而,故。2.設(shè),證明:,使得。 證:將上等式變形得:作輔助函數(shù),則在上連續(xù),在內(nèi)可導(dǎo), 由拉格朗日定理得:,即,即:。
2025-03-25 01:54
【摘要】第一篇:幾何證明題的技巧 幾何證明題的技巧 1)證明線段相等,角相等的題,通常找到線段所在圖形,證明全等 2)隱藏條件:比如特殊圖形的性質(zhì)自己要清楚,有些時(shí)候幾何題做不出來(lái)就是因?yàn)闆](méi)有利用好隱藏...
2024-10-21 22:38
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對(duì)于證明題,有三種思考方式: (1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】第一篇:線性代數(shù)證明題 、B都是n階對(duì)稱矩陣,并且B是可逆矩陣,證明:AB-1+、B為對(duì)稱矩陣,所以AT=A,BT=B TTT-1-1-1-1-1證明:因?yàn)門(mén)(AB-1+B-1A)T=(AB-1)...
2024-10-28 04:51
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【摘要】第一篇:初一幾何證明題 初一幾何證明題 一、1)D是三角形ABC的BC邊上的點(diǎn)且CD=AB,角ADB=角BAD,AE是三角形ABD的中線,求證AC=2AE。 (2)在直角三角形ABC中,角C=9...
2024-10-29 02:17
【摘要】第一篇:高等數(shù)學(xué)證明題 正文:不等式是中學(xué)數(shù)學(xué)中的重要內(nèi)容之一,也是解題的一種十分重要的思想方法。在中學(xué)證明不等式一般有比較法,綜合法,分析法,反證法,判別法,放縮法,數(shù)學(xué)歸納法,利用二項(xiàng)式定理和變...
2024-10-29 10:54
【摘要】第一篇:離散數(shù)學(xué)證明題 離散數(shù)學(xué)證明題 離散數(shù)學(xué)證明題:鏈為分配格 證明設(shè)a,b均是鏈A的元素,因?yàn)殒溨腥我鈨蓚€(gè)元素均可比較,即有a≤b或a≤b,如果a≤b,則a,b的最大下界是a,最小上界是b...
2024-10-31 22:00