【摘要】§相等向量與共線向量【學(xué)習(xí)目標、細解考綱】1理解相等向量與共線向量的概念2由向量相等的定義,理解平行向量與共線向量是等價的?!局R梳理、雙基再現(xiàn)】1相等向量是_________________________向量a與b相等,記作_______________。任意兩個相等的非零向量,都可用一條有向線段來表示,并且
2024-12-02 08:37
【摘要】課題:平面向量復(fù)習(xí)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標】通過本章的復(fù)習(xí),對知識進行一次梳理,突出知識間的內(nèi)在聯(lián)系,提高綜合運用向量知識解決問題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【摘要】3.2二倍角的三角函數(shù)我們知道,兩角和的正弦、余弦、正切公式與兩角差的正弦、余弦、正切公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?二倍角公式又有何重要作用呢?1.在S(α+β)中,令________,可得到sin2α=________,它簡記為S
2024-12-05 10:15
【摘要】1.三角函數(shù)的圖象與性質(zhì)情景:前面我們學(xué)習(xí)了三角函數(shù)的誘導(dǎo)公式,我們是借助于單位圓推導(dǎo)出來的.思考:我們能否借助三角函數(shù)的圖象來推導(dǎo)或直接得出三角函數(shù)的一些性質(zhì)呢?1.“五點法”作正弦函數(shù)圖象的五個點是__________、________、________、________、________.答案:(0,0
2024-12-05 10:17
【摘要】高中數(shù)學(xué)向量檢測題(難度大)一.選擇題(共3小題)1.(2014?重慶)已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是( )A.bc(b+c)>8 B.a(chǎn)b(a+b)>16 C.6≤abc≤12 D.12≤abc≤24 2.(2010?云南模擬
2025-04-04 05:07
【摘要】向量的坐標表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
【摘要】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
2024-12-09 03:46
【摘要】2020/12/24向量的加法看書P80~83(限時6分鐘)學(xué)習(xí)目標:通過實例,掌握向量的加法運算及理解其幾何意義。熟練運用加法的“三角形法則”和“平行四邊形”法則2020/12/24由于大陸和臺灣沒有直航,因此要從臺灣去上海探親,乘飛機要先從臺北到香港,再從香港到上海,這兩次位移
2024-11-17 11:59
【摘要】2.4.1向量的數(shù)量積(2)【學(xué)習(xí)目標】1、能夠理解和熟練運用模長公式,兩點距離公式及夾角公式;2、理解并掌握兩個向量垂直的條件。【預(yù)習(xí)指導(dǎo)】1、若),(),,(2211yxbyxa??則??ba______________________________2、向量的模長公式:設(shè)
2024-11-20 01:05