【摘要】1、(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且x∈(a,b)時,f′(x)0,又f(a)0B.f(x)在[a,b]上單調(diào)遞增,且f(b)0C.f(x)在[a,b]上單調(diào)遞減,且f(b)0D.
2025-11-06 02:40
【摘要】舜耕中學(xué)高一數(shù)學(xué)選修1—1導(dǎo)學(xué)案(教師版)編號20等級:周次上課時間月日周課型新授課主備人胡安濤使用人課題教學(xué)目標(biāo),求函數(shù)單調(diào)區(qū)間,證明單調(diào)性。教學(xué)重點會熟練用求導(dǎo),求函數(shù)單調(diào)區(qū)間,會從導(dǎo)數(shù)的角度解釋增減及增減快慢的情況教學(xué)難點證
2025-11-29 01:49
【摘要】§函數(shù)的最大值與最小值高三數(shù)學(xué)選修(Ⅱ)第三章導(dǎo)數(shù)與微分MaximumValue&MinimumValueofFunction實際問題如圖,有一長80cm寬60cm的矩形不銹鋼薄板,用此薄板折成一個長方體無蓋容器,要分別過矩形四個頂點處各挖去一個全等的小正方形,按加工要求,長方體的高不小
2025-11-01 00:27
【摘要】一、填空題(每題4分,共24分)1.(2020·吉林高二檢測)若函數(shù)f(x)=-x3+3x2+9x+a在區(qū)間[-2,-1]上的最大值為2,則它在該區(qū)間上的最小值為____.【解析】f′
2025-11-03 18:11
【摘要】導(dǎo)數(shù)在實際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無
2025-11-08 17:10
【摘要】常見函數(shù)的導(dǎo)數(shù)教學(xué)過程Ⅰ.課題導(dǎo)入[師]我們上一節(jié)課學(xué)習(xí)了導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義.我們是用極限來定義函數(shù)的導(dǎo)數(shù)的,我們這節(jié)課來求幾種常見函數(shù)的導(dǎo)數(shù).以后可以把它們當(dāng)作直接的結(jié)論來用.Ⅱ.講授新課[師]請幾位同學(xué)上來用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).=C(C是常數(shù)),求y′.[學(xué)生板演]解:y=f(x)=C,∴
2025-11-10 19:51
【摘要】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)概念導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)任務(wù)】1.了解導(dǎo)數(shù)的概念.2.掌握用導(dǎo)數(shù)的定義求導(dǎo)數(shù)的一般方法.3.在了解導(dǎo)數(shù)與幾何意義的基礎(chǔ)上,加深對導(dǎo)數(shù)概念的理解.【課前預(yù)習(xí)】1、函數(shù)223yxx??在3x?時的導(dǎo)數(shù)為,在
2025-11-25 18:01
【摘要】最大值、最小值問題(二)雙基達(dá)標(biāo)?限時20分鐘?1.將長度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯解析設(shè)一段長為x,則另一段為8-x,其中0x8.設(shè)y=x3+(8-x)3,則y′=3x2-
2025-11-24 00:13
【摘要】《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-函數(shù)的和差積商的導(dǎo)數(shù)教學(xué)目標(biāo)?熟練運用導(dǎo)數(shù)的函數(shù)的和差積商運算法則,并能靈活運用?教學(xué)重點:熟練運用導(dǎo)數(shù)的四則運算法則?教學(xué)難點:商的導(dǎo)數(shù)的運用由定義求導(dǎo)數(shù)(三步法)步驟:;)()()2(00xxfxxfxy???????算比值.lim)3(0xyyx?
2025-11-09 12:15