【正文】
捕獲在切割玻璃鋼復合材料的力學和主要變形機制,并且在任一所述的切割或法線方向超聲波振動的應用程序可以顯著降低切削力,最小化網絡連接 BRE形變,促進有利科幻 BRE 骨折在切割界面,并在很大程度上提高加工表面的質量。目前為止,大多數(shù)對 FRP 材料加工的實驗主要針對有以下幾個方面:纖維或基質類型的影響、纖維體積分數(shù)及方向的影響、刀具材料及形狀的影響、切削深度的影響 和所選用加工參數(shù)的影響。在加工特性中,振動在切削方向與法向的影響也已使用已有的新型激光器所研究了。 X方向進給率小于最大振動速度,這樣連續(xù)切削是在刀具每個振動周期中產生的。 為了建立對切削過程的力學模型,考慮一個單一的纖維是具有以下特征的代表性單元:( 1)工件的寬度與刀具相同并等于纖維的直徑;( 2)纖維斷裂前經過彈性變形;( 3)纖維斷裂時發(fā)生的最大拉伸應力超過其抗拉強度;( 4)刀具與纖維,刀具與工件接觸遵循赫茲接觸理論為方便起見, 力和變形的正方向表 切削種類 傳統(tǒng)切削 CDVA 切削 NDVA 切削 EVA 切削 刀具軌跡 刀具位移 5 是沿如圖 1 中定義正 x 和 z方向的。在脫粘的起始點, E, Pb應等于纖維 – 基體的接合強度σ b。( 8) – ( 11)和切削力FAx 在式( 6)確定。 基于最大拉伸應力斷裂準則,纖維的斷裂發(fā)生在纖維達到纖維抗拉強度。因此,傳統(tǒng)的切割系統(tǒng)相同的切削條件下,組裝在機器上刀具的動態(tài)剛度可以大大增加 T / TC 倍。 ] 7 振動頻率 f[kHz] 工件材料 單向 CFRP 振幅 a[μ m] 纖維取向θ [176。在這種情況下,纖維隨著變形的增加的,脫膠出現(xiàn)在 t= 23μ s 的第一時間,隨著刀尖到纖維的脫粘滲透深度的增加,最終 最大深度 h= m? 。顯然,在切削方向的振動的應用不僅改善了表面質量(三分之一的脫粘深度降低),而且提高了加工效率。顯然,EVA 切削僅僅就是在 CDVA 和 NDVA 運動合成。 21 面下很深的傷害,如圖 6( a)所示。最佳的表面質量是由 EVA 切削產生,不僅使表面更加光滑,而且纖維基體界面脫粘區(qū) – 最小化,如圖 6( d)所示。相反,刀具的垂直方向振動使刀具和纖維的接觸位置在切割過程中瞬間變化,進而改變脫粘深度。在傳統(tǒng)的切削,切削力的方向與最大拉應力隨刀具直到纖維是在 t= 248 s? (圖 9( a))。 25 單位寬度切削力 切削深度 傳統(tǒng) 單位寬度切削力 切削深度 傳統(tǒng) 圖 。該模型的性能已經通過實驗驗證了。 參考文獻 [1] . Zhang, . Zhang, . Wang, A force prediction model for cutting unidirectional fibrereinforced plastics, Mach. Sci. Technol. 5 (20xx) 293–305. [2] . Wang, . Zhang, An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics, Int. J. Mach. Tool. Manuf. 43 27 (20xx) 1015–1022. [3] . Zhang, Cutting posites: a discussion on mechanics modelling, J. Technol. 209 (20xx) 4548–4552. [4] . Zhang, . Chen, . Chen, . Zhang, Assessment of the exit defects in carbon fibrereinforced plastic plates caused by drilling, Precis. Mach. . 196 (20xx) 43–52. [5] . Wang, M. Ramulu, D. Arola, Orthogonal cutting mechanisms of graphite/epoxy posite1. Unidirectional laminate, Int. J. Mach. Tool. Manuf. 35 (1995)1623–1638. [6] W. Koenig, C. Wulf, P. Grass, H. Willerscheid, Machining of fibre reinforced plastics, CIRP AnnalsManufact. Technol. 34 (1985) 537–548. [7] R. Teti, Machining of posite materials, CIRP AnnalsManuf. Technol. 51(20xx) 611–634. [8] . Shyha, . Aspinwall, . Soo, S. Bradley, Drill geometry and operating effects when cutting small diameter holes in CFRP, Int. J. Mach. Tool. Manuf. 49 (20xx) 1008–1014. [9] N. Bhatnagar, N. Ramakrishnan, . Naik, R. Komanduri, On the machining of fiberreinforced plastic (Frp) posite laminates, Int. J. Mach. Tool. Manuf. 35 (1995) 701716. [10] . Rubio, . Abrao, . Faria, . Correia, . Davim, Effects of high speed in the drilling of glass fibre reinforced plastic: evaluation of the delamination factor, Int. J. Mach. Tool. Manu. 48 (20xx) 715–720. [11] . Jain, . Jain, K. Deb, Optimization of process parameters of mechanical type advanced machining processes using geic algorithms, Int. J. . Manuf. 47 (20xx) 900919. [12] V. Tagliaferri, G. Caprino, A. Diterlizzi, Effect of drilling parameters on the finish and mechanicalproperties of Gfrp posites, Int. J. Mach. Tool. Manuf. 30 28 (1990) 77–84. [13] . Hu, . Zhang, Some observations in grinding unidirectional carbon fibrereinforced plastics, J. Mater. Process Technol. 152 (20xx) 333–338. [14] . Hu, . Zhang, A study on the grindability of multidirectional carbon fibrereinforced plastics, J. Mater. Process Technol. 140 (20xx) 152–156. [15] . Soo, . Shyha, T. Bart, . Aspinwall, . Sim, Grinding performance and workpiece integrity when superabrasive edge routing carbon fibre reinforced plastic (CFRP) posites, CIRP AnnalsManufact. Technol. 61(20xx) 295–298. [16] D. Brehl, B. Brocato, M. Cemaway, T. Dow, N. Negishi, A. Sohn, Micromachining results for ductile, brittle, and polymer materials using an elliptical vibrationassisted machining system, in: Proceedings of ASPE Spring Topical Meeting on Precision Micro/Nano Scale Polymer Based Component and Device Fabrication, North Carolina State University, United States 20xx, pp. 8388. [17] . Brehl, . Dow, 3D microstructure creation using elliptical vibrationassisted machining, in: Proceedings of ASPE Spring Topical Meeting on Vibration Assisted Machining Technology, North Carolina State University,United States 20xx, pp. 2126. [18] . Brehl, . Dow, Review of vibrationassisted machining, Precis. Eng. 32 (20xx) 153172. [19] . Liang, . Wang, . Wu, . Xie, L. Jiao, . Zhao, Experimental study on brittleductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain, Int. J. Mach. . 71 (20xx) 41–51. [20] Y. Li, Y. Wu, L. Zhou, M. Fujimoto, Vibrationassisted dry polishing of fused silica using a fixedabrasive polisher, Int. J. Mach. Tool. Manuf. 77 (20xx) 93–102. [21] Y. Wang, B. Lin, S. Wang, X. Cao, Study on the system matching of ultrasonic 29 vibration assisted grinding for hard and brittle materials processing, Int. . Tool. Manuf. 77 (20xx) 6673. [22] L. Zhang, W. Xu, VibrationAssisted Cutting System and Method, Australian Patents No. 20xx900905, 20xx. [23] W. Xu, . Zhang, Y. Wu, Elliptic vibrationassisted cutting of fibrereinforced polymer posites: understanding the material removal mechanisms, Compos. Sci. Technol. 92 (20xx) 103–111. [24] . Xu, L. Zhang, . Wu, Micromechanical modelling of elliptic vibrationassisted cutting of unidirectional FRP posites, Adv. Mater. Res. 591 (20xx) 531–534. [25] . Zhang, Z. Lin, An analytical solution to springback of sheet metals stamped by a rigid punch and an elastic die, J. Mater. Process Technol. 63 (1997) 49–54. [26] N. Cristescu, . Craciun, E. Soo ?s, Mechanics of Elastic Composites, Chapmanamp。 (2) normaldirectional vibrationassisted (NDVA) cutting where the tool vibrates in the n