【摘要】等差數(shù)列教案設計一、教案內(nèi)容分析本節(jié)課是《普通高中課程標準實驗教科書·數(shù)學》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時。數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公
2025-04-17 08:32
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第1課時等差數(shù)列與等比數(shù)列要點·疑點·考點(比)數(shù)列的定義如果一個數(shù)列從第二項起,每一項與它的前一項的差(
2025-08-05 19:28
【摘要】預習學案課堂講義課時作業(yè)工具第一章數(shù)列欄目導引第二課時等差數(shù)列前n項和的性質(zhì)預習學案課堂講義課時作業(yè)工具第一章數(shù)列欄目導引1.進一步了解等差數(shù)列的定義,通項公式以及前n項和公式.2.理解等差數(shù)列的性質(zhì),等差數(shù)列前n項和公式的性質(zhì)應用.
2025-04-29 12:06
【摘要】主講老師:數(shù)列、等差數(shù)列復習知識框架圖數(shù)列一般數(shù)列特殊函數(shù)——等差數(shù)列通項公式遞推公式圖象法定義等差中項通項公式前n項和公式性質(zhì)定義分類基本概念基本題型題型一:求數(shù)列通項公式的問題例1.已知數(shù)列{an}的首項a1=1,其遞推
2024-11-09 08:45
【摘要】等差數(shù)列的通項公式復習數(shù)列的有關概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)
2025-08-16 02:28
【摘要】皖黃山市徽州區(qū)第一中學凌榮壽知識回顧等差數(shù)列AAAAAAAAAAAAA每一項與它前一項的差如果一個數(shù)列從第2項起,等于同一個常數(shù).......【說明】AAA①數(shù)列{an}為等差數(shù)列?an+1-an=d或an+1=an+dd=an+1-an②
2024-11-10 00:47
【摘要】等差數(shù)列1.定義:或2.等差數(shù)列的通項:或。3.等差中項:若成等差數(shù)列,則A叫做與的等差中項,且4.等差數(shù)列的前和:,5.等差數(shù)列的性質(zhì):(1)當公差時,等差數(shù)列的通項公式是關于的一次函數(shù),且斜率為公差;是關于的二次函數(shù)且常數(shù)項為0.(2)若公差,則為遞增等差數(shù)列,若公差,則為遞減等差數(shù)列,若公差,則為常數(shù)列。
2025-03-25 06:56
【摘要】等差數(shù)列求和教學設計 一、教學目標: 1、知識與技能 (1)初步掌握一些特殊數(shù)列求其前n項和的常用方法. (2)通過把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列...
2024-12-07 01:18
【摘要】預習學案課堂講義課后練習工具第二章數(shù)列欄目導引第2課時等差數(shù)列前n項和的性質(zhì)預習學案課堂講義課后練習工具第二章數(shù)列欄目導引預習學案課堂講義課后練習工具第二章數(shù)列欄目導引,通項公式以及前n項