【摘要】第3章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入第1課時(shí)數(shù)系的擴(kuò)充教學(xué)過程隨著生產(chǎn)和科學(xué)發(fā)展的需要數(shù)集逐步擴(kuò)充,它的每一次擴(kuò)充,對(duì)數(shù)學(xué)學(xué)科本身來說,也解決了在原有數(shù)集中某種運(yùn)算不是永遠(yuǎn)可以實(shí)施的矛盾,分?jǐn)?shù)解決了在整數(shù)集中不能整除的矛盾,負(fù)數(shù)解決了在正有理數(shù)集中不夠減的矛盾,無理數(shù)解決了開方開不盡的矛盾
2025-11-10 23:12
【摘要】數(shù)系的擴(kuò)充和復(fù)數(shù)的引入數(shù)的概念是從實(shí)踐中產(chǎn)生和發(fā)展起來的。隨著生產(chǎn)和科學(xué)的發(fā)展,數(shù)的概念也不斷的被擴(kuò)大充實(shí)從小學(xué)到現(xiàn)在,大家都依次學(xué)過哪些數(shù)集呢?自然數(shù)集整數(shù)集有理數(shù)集實(shí)數(shù)集NZQR知識(shí)回顧我們可以用下面一組方程來形象的說明數(shù)系的發(fā)展變化過程:(1)在自然數(shù)集中求方程
2025-11-09 13:29
【摘要】數(shù)系的擴(kuò)充練習(xí)與解析第Ⅰ卷(選擇題共30分)一、選擇題(本大題共10小題,每小題3分,共30分)①0比-i大②兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù),當(dāng)且僅當(dāng)其和為實(shí)數(shù)③x+yi=1+i的充要條件為x=y=1④如果讓實(shí)數(shù)a與ai對(duì)應(yīng),那么實(shí)數(shù)集與純虛數(shù)集一一對(duì)應(yīng)
2025-11-26 03:04
【摘要】定積分的概念:在直角坐標(biāo)系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=b因此,我們可以用這條直線L來代替點(diǎn)P附近的曲線,也就是說:在點(diǎn)P附近,曲線可以看作直線(即在很小范圍內(nèi)
2025-11-08 12:01
【摘要】03數(shù)系的擴(kuò)充與復(fù)數(shù)的引入,§3.2復(fù)數(shù)代數(shù)形式的四則運(yùn)算,第二課時(shí)復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,第一頁,編輯于星期六:點(diǎn)三十八分。,目標(biāo)導(dǎo)向,第二頁,編輯于星期六:點(diǎn)三十八分。,第三頁,編輯于星期六:點(diǎn)三...
2025-10-13 19:04
【摘要】一知識(shí)結(jié)構(gòu)圖定義代數(shù)形式四則運(yùn)算幾何意義數(shù)系的擴(kuò)充復(fù)數(shù)的概念復(fù)數(shù)的運(yùn)算復(fù)數(shù)二主要知識(shí)點(diǎn)1、基本概念⑴復(fù)數(shù)的單位為i,它的平方等于-1,即.⑵復(fù)數(shù)及其相關(guān)概念:①復(fù)數(shù)—形如a+bi的數(shù)(其中);②實(shí)數(shù)—當(dāng)b=0時(shí)的復(fù)數(shù)a+bi,即a;③虛數(shù)—當(dāng)時(shí)的復(fù)數(shù)
2025-04-04 05:05
【摘要】第3章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(B)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.若(x2-1)+(x2+3x+2)i是純虛數(shù),則實(shí)數(shù)x的值是________.2.復(fù)數(shù)1+2i3=__________.3.如圖,設(shè)向量OP→,PQ→,OQ→,O
2025-11-26 09:30
【摘要】2020/12/242020/12/24??,1,.,,211033dxxdxxxxf???例如分對(duì)于有些定積卻比較麻煩的值計(jì)算但直接用定積分的定義非常簡(jiǎn)單雖然被積函數(shù)現(xiàn)從前面的學(xué)習(xí)中可以發(fā).dxx121?定義計(jì)算請(qǐng)你嘗試?yán)枚ǚe分幾乎不可能.??
2025-11-08 05:48
【摘要】第一課時(shí):變化率與導(dǎo)數(shù)BCA案主備人:王明華審核人:付之美使用時(shí)間:教學(xué)目標(biāo):1.借助實(shí)例分析引入變化率的概念,為學(xué)習(xí)導(dǎo)數(shù)奠定基礎(chǔ),幫助學(xué)生理解實(shí)例的過程。2.理解導(dǎo)數(shù)的概念,掌握球?qū)?shù)的定義方法。3.理解導(dǎo)數(shù)的幾何意義,物理意義。B案課前預(yù)習(xí)::函數(shù))(xfy?,
2025-11-29 22:39