【摘要】等比數(shù)列求和古印度舍罕王打算重賞大臣達(dá)依爾——國(guó)際象棋發(fā)明人。這位大臣說(shuō):“陛下,請(qǐng)您在這張棋盤上的第一格內(nèi),賞給我1粒麥子,在第2格內(nèi)給2粒,第3格內(nèi)給4粒,依次類推,每小格內(nèi)的麥粒數(shù)都是前1小格的2倍,直到64個(gè)格子。請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求吧!”國(guó)王一聽(tīng),認(rèn)為大臣的這個(gè)要求不高,就欣然同意了。
2025-10-25 15:44
【摘要】等比數(shù)列教學(xué)目標(biāo):掌握等比數(shù)列的定義,理解等比數(shù)列的通項(xiàng)公式及推導(dǎo),并能簡(jiǎn)單應(yīng)用公式重點(diǎn):(1)等比數(shù)列概念的理解與掌握(2)等比數(shù)列通項(xiàng)公式的應(yīng)用難點(diǎn):等比數(shù)列通項(xiàng)公式的應(yīng)用觀察下列各數(shù)列:?????,1,1,1,1)6(81
2024-11-09 09:18
【摘要】等比數(shù)列復(fù)習(xí):(1)什么叫等差數(shù)列?(2)等差數(shù)列的通項(xiàng)公式是什么?如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列.其表示為:an=a1+(n-1)d)2,(1????nddaann為常數(shù)(3)在等差數(shù)列{an}中,若m+n=p+q(m,n,p,q是正整數(shù)),
2025-01-06 16:31
【摘要】第3節(jié)等比數(shù)列考綱展示考綱解讀.1.等比數(shù)列是高考必考內(nèi)容,在選擇題、填空題及解答題中都有可能出現(xiàn),屬低、中檔題.n項(xiàng)和公式.2.重點(diǎn)考查等比數(shù)列定義、基本運(yùn)算、性質(zhì)(特別是等比中項(xiàng)的性質(zhì))、通項(xiàng)公式及前n項(xiàng)和公式等.3.了解等比數(shù)列與指數(shù)函數(shù)的關(guān)系.3.常與等差數(shù)列或函數(shù)、不等式
2024-11-11 08:58
【摘要】復(fù)習(xí):等差數(shù)列等比數(shù)列定義通項(xiàng)公式性質(zhì)Sn等比數(shù)列前n項(xiàng)和公式(1)64個(gè)格子1223344551667788你想得到什么樣的賞賜?陛下,賞小人一些麥粒就可以。OK請(qǐng)?jiān)诘谝粋€(gè)格子放1顆麥粒請(qǐng)?jiān)诘诙€(gè)格子放2顆麥粒請(qǐng)?jiān)诘谌齻€(gè)格子放4顆麥粒請(qǐng)?jiān)诘谒?/span>
2025-01-17 07:55
【摘要】等比數(shù)列的前n項(xiàng)和(一)李超2020年9月(一)知識(shí)回顧::11???nnqaa:②在等比數(shù)列{}中,若則()naqpnm???qpnmaaaa?????Nqpnm
【摘要】第4課時(shí)等差、等比數(shù)列的應(yīng)用?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點(diǎn)·疑點(diǎn)·考點(diǎn)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,存期為x
2025-04-30 03:31
【摘要】第三節(jié)等比數(shù)列及其前n項(xiàng)和基礎(chǔ)梳理從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一常數(shù)公比q1.等比數(shù)列的定義如果一個(gè)數(shù)列那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的,通常用字母表示.a1qn2.等比數(shù)列的通項(xiàng)公式設(shè)等比數(shù)列{an}的首項(xiàng)為a1
2024-11-12 01:24
【摘要】《等比數(shù)列的前n項(xiàng)和公式》教學(xué)設(shè)計(jì)說(shuō)明河南省開(kāi)封市第二十五中學(xué) 姜黎黎《等比數(shù)列前n項(xiàng)和》是人教版必修5第二章數(shù)列中第五節(jié)第一課時(shí)的內(nèi)容。下面,我從教材分析,情境創(chuàng)設(shè)、公式推導(dǎo),公式應(yīng)用,教學(xué)反思等幾個(gè)方面,談?wù)勛约旱墓芨Q之見(jiàn),與各位老師探討。?教材分析等比數(shù)列的前n項(xiàng)和是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、是進(jìn)一步學(xué)習(xí)數(shù)列知識(shí)和解決一類求和問(wèn)題的重要
2025-05-02 13:16