【正文】
花鍵軸套網(wǎng)格及約束分布圖443 花鍵軸套1階振型圖圖444 花鍵軸套2階振型圖圖445 花鍵軸套3階振型圖圖446 花鍵軸套4階振型圖圖447 花鍵軸套5階振型圖表44 中間齒輪前5階頻率及最大位移階數(shù)頻率(Hz)最大位移(mm)振型描述1X向振動Y向擺動2X向振動Z向擺動3對稱振動4對稱振動5繞Z向扭轉(zhuǎn)4)總結(jié):綜上可知2階模態(tài)頻率和位移都很接近,頻率較低;4階模態(tài)頻率接和位移接近,頻率居中,位移最大,若在此范圍發(fā)生共振對花鍵軸套影響最大;5階模態(tài)頻率最高;由振型圖可知,前5階模態(tài)的最大位移都發(fā)生在花鍵軸套頂部,即非工作嚙合區(qū)域內(nèi)。整體前處理2)采用10節(jié)點(diǎn)的四面體單元(solid92),自由方式進(jìn)行網(wǎng)格劃分,單元尺寸設(shè)定為100mm,共10683節(jié)點(diǎn),10752單元。但現(xiàn)實(shí)情況中,零件不僅受到零位移約束,因?yàn)閱蝹€(gè)零件不可能完成生產(chǎn)需要,需要與其他零件或結(jié)構(gòu)配合,這樣就會產(chǎn)生接觸。也就是說,最優(yōu)設(shè)計(jì)方案就是一個(gè)最有效率的方案。這一循環(huán)過程重復(fù)進(jìn)行直到所有的設(shè)計(jì)要求都滿足為止。該文件必須包括整個(gè)分析的過程,而且必須滿足以下條件:(1)參數(shù)化建立模型(PREP7)。(9)指定優(yōu)化循環(huán)控制方式。圖54 插頭優(yōu)化后等效應(yīng)力分布圖表52 優(yōu)化前后各項(xiàng)數(shù)據(jù)對比項(xiàng)目設(shè)計(jì)變量(DV)目標(biāo)函數(shù)(OBJ)R(mm)H(mm)SMAX()優(yōu)化前100410173優(yōu)化后95405159優(yōu)化總結(jié):本設(shè)計(jì)采用參數(shù)化實(shí)體模型的優(yōu)化方法對插頭進(jìn)行優(yōu)化,使十分艱巨的工作變得簡單、直觀、高效。并利用大型通用有限元分析軟件ANSYS對主傳動系統(tǒng)三維模型完成分析、優(yōu)化等工作。參考文獻(xiàn)[1][M]. 北京:冶金工業(yè)出版社,2007[2]劉濤、[M].清華大學(xué)出版社,[3]郭興旺,[J].振動與沖擊[4][M].北京:冶金工業(yè)出版社,1991[5]崔超,臧勇軋機(jī)主傳動系統(tǒng)扭振的有限元法研究[J].重型機(jī)械,1999 [6][M].北京:機(jī)械工業(yè)出版社,[7][M].北京:機(jī)械工業(yè)出版社,[8] 李重偉.有限元分析方法綜述[J].天津建設(shè)科技,(1~3)[9]劉相新,[M].科學(xué)出版社,2006[10]唐穎,劉曉明,[J].連云港化工高等學(xué)校校報(bào), [11][J].煤礦機(jī)械, [12][J].機(jī)械科學(xué)與技術(shù),(10):11461148[13]《機(jī)械工程材料性能數(shù)據(jù)手冊》[M].北京:機(jī)械工業(yè)出版社,[14]楊康,[J].佳木斯大學(xué)學(xué)報(bào), [15]孫玉國,劉海江,孫玲玲,[J].振動、測試與診斷, [16]段進(jìn),倪棟, [M].兵器工業(yè)出版社,[17] WANG Minting, ZANG Xinliang, LI Xuetong, DU Fengshan. Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution[J] .JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL. 2007. 14(3): 3036[18][J].武漢科技大學(xué)碩士學(xué)位論文[19]陳先霖,鄒家祥. 軋鋼機(jī)扭振的實(shí)測、電算與優(yōu)化設(shè)計(jì)[J].北京科技大學(xué)學(xué)報(bào),1980年04期[20][M]. 北京:冶金工業(yè)出版社,附錄*CREAT,OPTIM !*定義參數(shù)R=100H=410 /PREP7 !*建立參數(shù)模型 K,1,0,0,0, K,2,0,350,0,K,3,85,350,0, K,4,85,310,0, K,5,110,310,0, K,6,280,350,0, K,7,640,350,0, K,8,640,0,0,FLST,3,2,3 FITEM,3,1 FITEM,3,2 BSPLIN, ,P51X FLST,2,2,3 FITEM,2,2 FITEM,2,3 FLST,3,2,3 FITEM,3,2 FITEM,3,3 BSPLIN, ,P51X FLST,3,2,3 FITEM,3,3 FITEM,3,4 BSPLIN, ,P51X FLST,3,2,3 FITEM,3,4 FITEM,3,5 BSPLIN, ,P51X FLST,3,2,3 FITEM,3,5 FITEM,3,6 BSPLIN, ,P51X FLST,3,2,3 FITEM,3,6 FITEM,3,7 BSPLIN, ,P51X FLST,3,2,3 FITEM,3,7 FITEM,3,8 BSPLIN, ,P51X FLST,3,2,3 FITEM,3,1 FITEM,3,8 BSPLIN, ,P51X FLST,2,8,4 FITEM,2,1 FITEM,2,2 FITEM,2,3 FITEM,2,4 FITEM,2,5 FITEM,2,6 FITEM,2,7 FITEM,2,8 AL,P51X FLST,2,1,5,ORDE,1 FITEM,2,1 FLST,8,2,3 FITEM,8,1 FITEM,8,8 VROTAT,P51X, , , , , ,P51X, ,360, , FLST,2,4,6,ORDE,2 FITEM,2,1 FITEM,2,4 VADD,P51X VPLOT WPOFF,342,0,0 CSYS,4 PCIRC,210,0,120,240,WPOFF,342,0,0 CSYS,4 K,111,640,275,0,K,112,640,275,0, K,113,540,245,0,K,114,540,245,0, FLST,3,3,3 FITEM,3,111 FITEM,3,113 FITEM,3,27 BSPLIN, ,P51X, , , , ,FLST,3,3,3 FITEM,3,112 FITEM,3,114 FITEM,3,28 BSPLIN, ,P51X, , , , ,LSTR, 111, 112 LSTR, 27, 28 FLST,2,4,4 FITEM,2,56 FITEM,2,59 FITEM,2,57 FITEM,2,58 AL,P51X FLST,2,2,5,ORDE,2 FITEM,2,1 FITEM,2,9 AADD,P51X VOFFST,17,500, , VOFFST,17,500, ,VSBV, 5, 2 VSBV, 3, 1 K,222,110,0,260, K,223,0, K,224,0, K,225,630,0,0, K,228,110,0,400, K,229,110,0,400,K,226,700,0,400,K,227,700,0,400,K,230,110,0,260,LSTR, 230, 229 LSTR, 229, 226 LSTR, 226, 227 LSTR, 227, 228 LSTR, 228, 222 LSTR, 230, 224 LSTR, 222, 223 FLST,3,3,3 FITEM,3,223 FITEM,3,224 FITEM,3,225 BSPLIN, ,P51X LDELE, 54 LARC, 223, 224, 225 FLST,2,8,4 FITEM,2,47 FITEM,2,46 FITEM,2,41 FITEM,2,40 FITEM,2,39 FITEM,2,52 FITEM,2,54 FITEM,2,53 AL,P51X APLOT VOFFST,1,500, , VOFFST,1,500, ,VSBV, 2, 1 VSBV, 4, 3 WPRO, CYL4,H,0,R !*定義參數(shù)方程VOFFST,1,500, ,VOFFST,1,500, , VSBV, 1, 3 VSBV, 4, 2 ET,1,SOLID92 !*選擇單元類型ESIZE,30,0, !*設(shè)置單元尺寸MSHAPE,1,3D !*劃分網(wǎng)格MSHKEY,0 CM,_Y,VOLU VSEL, , , , 1 CM,_Y1,VOLU CHKMSH,39。 c is specific heat。C and the temperature before coiler was measured to be 560 C. The predicted temperatures agree well with the measured temperatures.From Fig 3, it is found that the austenite grain size is refined from an initial size of at the center and at the surface to and , respectively. The maximum change of the grain size exists at the stand F1, and it subsequently decreases slowly by actions of deformation refinement. The final austenite grain size grade measured is about 8 ( ). Thus, the predicted grain size of austenite is in good agreement with the measured result.Fig. 4 shows the simulated distributions of DRX and SRX volume fractions in hot strip continuous rolling process. In the hot rolling process, the steel is deformed using higher strain rates at considerably lower temperature, but the plastic strains at the first three passes are greater than the critical strains, and the DRX fraction at the stand F1 is %. Therefore,DRX still has a great effect on the grain size and cannot be ignored. During the time intervals among the first four finishing stands, full SRX can be obtained but some fractions are smaller than 1,while, the remanent softening can be plete by MRX according to the calculation procedures described above.When the stock passes through the runout table,the austenite microstructure of the steel is gradually transformed into ferrite and pearlite with decreasing the temperature. The predicted ferrite grain size after transformation is presented in with a span of to . shows the actual metallograph of ferrite and pearlite,and the measured ferrite grain size is about . Thus, the calculated grain size of fer