【正文】
r M. Inverse Dynamics of a Parallel Manipulator. Journal of Robotic System ,1994 , 11 (8) :693~702[10] 白志富,韓先國,陳五一. 基于Lagrnge 方程三自由度并聯(lián)機(jī)構(gòu)動(dòng)力學(xué)研究. 北京航空航天大學(xué)學(xué)報(bào), 2004 , 30 (1) :51~54[11] Wang J G,Gosselin C M. A New Approach for the Dynamic Analysis of Parallel Manipulators. Multibody System Dynamics , 1998 (2) : 317~334[12] Tsai L W. Solving the Inverse Dynamics of a Stewart Gough Manipulator by the Principle of Virtual Work. ASME Journal of Mechanical Design , 2000 (122) : 3~9[13] 楊志永, 趙學(xué)滿, 黃田,等. 并聯(lián)機(jī)構(gòu)動(dòng)力學(xué)建模及伺服系統(tǒng)參數(shù)辨識. 天津大學(xué)學(xué)報(bào), 2004 , 37(6) :475~479[14] 劉武發(fā),. 機(jī)械與電子,2007 (5) :51~54[15] 劉其廣,戈新生. 一種機(jī)器人動(dòng)力學(xué)的旋量——,2001 ,16 (3) :17~22[16] Metrikin V S , Nagayev R F , Stepanova V V , et al . Periodic and stochastic selfexcited oscillations in a system with hereditary2type dry friction[J ] . J . Appl . Maths Mechs , 1996 , 60 (5) : 8452850.[17] Jon Juel Thomsen , Alexander Fidlin. Analytical approximations for stick slipvibrationamplitudes [ J ] . International Journal of Non2Linear Mechanics , 2003 , 38 (3) : 3892403.[18] Dooley J R ,Mccarthy J M. Spatial Rigid Body Dynamics Using Dual Quaternion IEEE International Conference on Robotics and Automation , Sacramento , California ,USA ,1991[19] Liu G F ,Li Z X. A Unified Geometric Approach to Modeling and Control of Constrained Mechanical Systems. IEEE Transactions on Robotics and Automation , 2002 , 18 (4) : 574~587[20] Yiu Y K, Cheng H , Xiong Z H ,et al. On the Dynamics of Parallel Manipulators. The IEEE International Conference on Robotics and Automation ,Seoul , Korea , 2001[21] Spong M W. Remarks on Robot Dynamics : Canonical Transformations and Riemannian Geomet ry. The IEEE International Conference on Robotics and Automation , Nice , France , 1992[22] Liu G F ,Li Z X. A Unified Geometric Approach to Modeling and Control of Constrained Mechanical Systems. IEEE Transactions on Robotics and Automation , 2002 , 18 (4) : 574~587[23] 馮志友,李永剛,張策等. 并聯(lián)機(jī)器人機(jī)構(gòu)運(yùn)動(dòng)與動(dòng)力分析研究現(xiàn)狀及展望, 2006, 17 (9) :979~984[24] 黃真,孔令富,方越法. 并聯(lián)機(jī)器人機(jī)構(gòu)學(xué)理論及控制. 北京:機(jī)械工業(yè)出版社, 1997[25] Jingfei He,Yan Chen,Hua Deng. Dynamic Modeling of Large Scale Heavy Duty Grippers Basedon the Response Dead Zone of Counteracting : et al.(Eds.).ICIRA 2008,PartII ,LNAI5315. Wuhan:Springer,2008. 879~886[26] Jingfei He, Rongguang Nie,Zhiqiang Fu. Fevolute of grippers with precision Mechanics Modeling (in Chinese). Modern Manufacturing Engineering, 2008(11):86~9.[27] 何競飛,陳艷,[J].機(jī)械設(shè)計(jì),2009,26(2):55~58[28] 何競飛,聶榮光,浮志強(qiáng),“含轉(zhuǎn)動(dòng)副摩擦夾持機(jī)構(gòu)精確力學(xué)建?!保F(xiàn)代制造工程,2008(11):86~91.[29] 約翰、擬解決的關(guān)鍵科學(xué)問題(1)、反作用力響應(yīng)盲區(qū)理論體系構(gòu)建反作用力響應(yīng)盲區(qū)對重載裝置的承載能力的提高有顯著的作用,但同時(shí)又降低了自動(dòng)控制精度,加大自動(dòng)控制的難度。 技術(shù)路線 可行性分析(1)本項(xiàng)目提出的研究內(nèi)容以已完成的國家973項(xiàng)目子課題“大尺度重型構(gòu)件穩(wěn)定夾持原理與夾持系統(tǒng)驅(qū)動(dòng)策略”為研究基礎(chǔ),通過研究反作用力響應(yīng)盲區(qū)對重載夾持裝置夾持穩(wěn)定性的影響規(guī)律,為重載夾持裝置的優(yōu)化設(shè)計(jì)提供技術(shù)參考和理論依據(jù),具有較高的工程意義和現(xiàn)實(shí)意義。用接觸力學(xué)和旋量理論描述機(jī)械系統(tǒng)的穩(wěn)定狀態(tài),建立運(yùn)動(dòng)副反力的確定條件,完成新的重載裝置剛?cè)狍w動(dòng)力學(xué)模。實(shí)驗(yàn)室簡介:1)、鍛造夾持操作實(shí)驗(yàn)系統(tǒng)自行研制鍛造夾持操作實(shí)驗(yàn)系統(tǒng)如圖10所示。本系統(tǒng)在MATLAB GU I編程的基礎(chǔ)上,設(shè)計(jì)了基于MATLAB GUI的重載操作裝備夾持系統(tǒng)仿真與