【正文】
ormation of cross linkage became easier with a shortening of distances, with a result that gelling occurred at a lower temperature. The same mechanism seemed to be operating in the shift towards the lower temperature in the present thermosetting gel. Thermosetting gel solution, gellan gum solution, and poloxamer solution showed different types of fluidity, which were manifested respectively as Newtonian flow, quasiviscous flow, and quasiplastic flow. While all these solutions showed improvement in precorneal residence time by sol– gel transition, the thermosetting gel solution and poloxamer solution never failed to undergo gelation at a temperature near the ocular surface temperature, which suggested that their residence behavior was excellent. In addition, yield value in shear stress waszero or extremely small for the thermosetting gel solution and gellan gum solution, which indicated that these solutions are only slightly resistant to nictitation and produce a favorable feel to the eye. Conclusion We investigated the effect of the ternary MC– PEG– SC system vehicle position on reversible sol– gel transition temperature. A decrease in the reversible sol– gel transition temperature depended on PEG and MC concentrations when the SC concentration was kept constant, but did not depend on PEG molecular weight. The sol– gel transition temperature increased with decrease in pH. Furthermore, decrease in reversible sol– gel transition temperature with increasing PEG concentration was observed in the presence of various ophthalmic drugs as in their absence. By parison of the rheological properties of the present thermosetting gel solution with those of the wellknown in situ gelling systems, gellan gum and poloxamer solutions, it became clear that the present solution radically differed from the latter solutions, and its usefulness as a drug delivery system for instillation into the eye was suggested. References 1. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R (1998) Prog Retin Eye Res 17:33 2. Sasaki H, Nishida K, Nakamura J, Ichikawa M (1996) Prog Retin Eye Res 15:583 3. Chrai SS, Robinson JR (1974) J Pharm Sci 63:1218 4. Kurimoto K, Eguchi K, Kitajima S, Kishimoto N, Matsumoto N, Otsuki (1991) Atarashii Ganka 8:1259 5. Kabayama T, Suzuki H, Horiuchi T, Akutagawa Y, Matsuzaki H (1979) J Jpn Ophthalmol Soc 83:326 6. Takeuchi M, Kageyama S, Suzuki H, Wada T, Toyoda Y, Oguma T, Ezure Y, Tsuriya Y, Kato T, Ishii F (1999) Mater Technol 17:445 7. Patton TF, Robinson JR (1975) J Pharm Sci 64:1312 8. Rozier A, Mazuel C, Grove J, Plazon,B (1989) Int J Pharm 57:163 9. Kato T, Yokoyama M, Takahashi A(1978) Colloid Polym Sci 265:15 10. Heymann E (1935) Trans Farad Soc 31:846 11. Edmond E, Ogston AG (1968) Biochem J 109:569 12. Miyoshi E, Nishinari K (1998) Kobunshi Ronbunshu 55:567 13. Vadnere M, Amidon G, Lindenbaum S, John L (1984) Int J Pharm 22:207 14. Cho CW, Shin SC, Oh IJ (1997) Drug Dev Ind Pharm 23:1227 。同樣 的 原理 似乎 將用在低溫下的 熱定形凝膠。 MC呈現(xiàn) 出 溶于水的纖維素,有高的結晶度和低的水溶性部分。表觀粘度測定用流變儀 測定 。 將 5毫升的樣品放在玻璃 測 試管中 ( 12貼片機的直徑,內(nèi)徑 ),然后 將 測試管 放 在一個恒溫浴 中 5分鐘。 2 實驗材料 四種不同的甲基纖維素( MC),即, MC( SM 15, 25, 400, 1500) , 聚乙二醇1000(平均分子量 950– 1050), 4000(平均分子量 2600– 3800), 6000(平均分子 量 7300– 9300)簡稱 PEG 1000, 4000, 6000)和二水檸檬酸鈉( SC) , 泊洛沙姆 407, 馬來酸 噻嗎洛爾 , 氧氟沙星 , 倍他米松磷酸鈉 。 [關鍵詞 ] 熱定形凝膠 ; 溶膠凝膠轉變溫度 ; 甲基纖維素聚乙二醇檸檬酸三元體系 1 前言 本 研究提高 了 眼用溶液 在吸收過程中利用度差的問題, 例如 ,在 溶液 溶解時利用這個屬性 而 由此獲得的聚合物 。C , 然而,溫度降低的程度 不受 PEG分子量的影響 , 隨著 MC濃度的增加 可逆溶膠 ~凝膠 的溫度降低,同時隨著 ph值的降低 可逆溶膠 ~凝膠 的溫度升高,在 流變特性的比較 方面,目前原位膠凝的設置解決方案和常規(guī) 相比, 如結冷膠溶液或泊洛沙姆 407,顯示目前的解決方案從根本上有別于傳統(tǒng)的解決方案 , 這些研究結果表明 , 這項研究中的三元體系可作為在眼部傳遞灌輸系統(tǒng) 的 藥物 。此外, 從 流變性 方面 與其他原位凝膠 在眼科中應用 進行比較 。 膠凝溫度通過試管倒置法測量 通過試管倒置法測定可逆 性 溶膠凝膠溫度。聚乙二醇濃度: 0 %, 2 %, 4 %, 6 %,8 %, 10 %。膠凝溫度測試管反演方法和流變儀 方法 得到的 數(shù)據(jù) 之間有明顯的正相關(相關系數(shù) R = ) 。 PEG 1000, 4000,和 6000他們的影響大致相當于減少熱定形凝膠 的 溫度 ,隨著 SM 25濃度的增加,由于 PEG依賴熱定形凝膠溫度 而使 曲線移向較低的溫度 , 這個熱定形凝膠溫度 隨MC溶液濃度的增加而減少的趨勢,可由三甲基葡萄糖序列之間的距離 而 縮短 , 這使 結晶和交聯(lián)的形成變得更容易, 這是 凝膠發(fā)生在一個較低的溫度 和短距離的結