【正文】
e series connected system, the first and second equation of (10) are added to the first and second equation of (11), respectively so that with vsa = vsa2 + vsa1, vsb = vsb2 + vsb1, along with the two speed and two position equations, the overall dynamic model for simulation is sapeqpeqsaSsa vnKnKiRdtdiL ????? )s i n()s i n(22 2211 ???? sbpeqpeqsbSsb vnKnKiRdtdiL ????? )s i n()c os (22 2211 ???? 1111 )c os ()s i n( Lpsbeqpsaeq niKniKdtdJ ???? ???? 11 ?? ?dtd 外文翻譯( 原 文) 14 222 )c os ()s i n(2 Lpsbeqpsaeq niKniKdtdJ ???? ???? 22 ?? ?dtd Here dtdrrxxeqeq11111???? dtdrrxxeqeq22221???? The speed profile was the same as the parallel connected case. The position profile are also similar to the parallel connected case. The speed tracking error is less than 5+104m/s and therefore is not shown. The quadrature currents shown below are identical to the parallel case as it must since the torque required for either case is the same. The uncontrolled currents id1, id2. The difference in the trajectories of the two currents can be explained by the fact the initial angular position of the two motors was different. As in the parallel case, this represents wasted power RSi2 d because in a one inverter—one motor scenario, this current would typically be zero. The direct currents below show a slight difference between the parallel and series cases. Finally, the phase voltage vS1 is shown where it is noted that the maximum of the voltage is about 180V. 5. Conclusions and summary A controller has been presented that allows one to independently control the torque (force) of two motors which share the same inverter. Such a system allows one to force each motor to track its reference trajectory despite the load disturbances acting on it. However, due to the presence of a singularity in the controller, the 外文翻譯( 原 文) 15 viability of this approach is limited to situations for which the two motors are tracking the same trajectory such as elevator doors. In such a case, the system can be designed where the two motors track the nominal trajectory and are well removed from the singularity. The difference between the parallel and series connection is not really significant and the choice could be made based on reliability considerations. For example, if a phase fails in the parallel case, then one of the doors could still be operational (one would have to detect the failure and then control the remaining motor in the normal fashion). The rating of the inverter could also determine the choice of the connection. The series connected motor system uses twice the voltage of the parallel concocted motor system, but half the current. This is simply a result of conservation of energy. Safety and recovery issues are important issues for future consideration. For example, when one door is being blocked and therefore, manded to reopen, then this same mand (trajectory reference) must be sent to the other door so that they maintain their separation of req? /2 to avoid the singularity in the controller. This ―stiffness‖ of the doors (., acting as if they are mechanically connected to a single cable to force them to open and close together) is dependent on how fast the blocking of the door can be detected and then a mand given to the other door to open them while maintaining the separation req? /2. Acknowledgment The authors are grateful to Dr. Thomas He for his help with the door model. We would also like to thank the anonymous reviewers for their helpful ments. 外文翻譯( 譯 文) 16 一個逆變器在電梯門中控制兩個永磁直線電動機 摘要 : 本 文認為 永磁同步電動機 的 控制采用一個單一的逆變器。標準的方法來控制永磁同步電機是使用一個單一的逆變器提供獨立控制的直 接和正交電壓(和因此的直接和正交電流)的運動。且電梯一旦發(fā)生沖頂或蹲底,不但會造成電梯機械部件損壞,還可能出現(xiàn)人身事故。外文翻譯( 譯 文) 17 目前電梯的控制 普遍采用了兩種方式,一是采用微機作為信號控制單元,完成電梯信號的采集、運行狀態(tài)和功能的設定,實現(xiàn)電梯的自動調度和集選運行功能,拖動控制則由變頻器來完成;第二種控制方式用可編程控制器( PLC)取代微機實現(xiàn)信號集選控制。這種方法也被認為是在工作 [ 6 ]。然而,為了降低成本,審議的問題是,能夠 使用單一的逆變器 獨立控制雙直線電機 。如果該階段的完全耦合, 則 M =21LS。 3. 電機規(guī)格 電機參數(shù)被指定為一個線性電動機和變換為等價的旋轉電機。 線性力 由 此電機 給出 F = Keq iq / req= 23 Km iq / req 門模型 門 模型來自 技術報告 [ 4 ]和 形式 是 dx/dt = Ax+bu y =Cx 其中 A ?R8? 8 , b?R8 , C?R8? 8 {A , b, C }的值 由 [4]給定 。總距離 是 每 門 555mm。 4. 雙電機和逆變器 這里使用一個單一的變頻器和獨立控制每個電機 的 方法,這反過來又要求離開失控的直接電流正交電流控制電機 來控制電機 。狀態(tài)變量 x1, x2的兩個測量 /計算狀態(tài)變量,使輸出矩陣簡化為 ??????? 00000010 00000001C 門的質量是由 Mc表示,這樣的門 /電機 組合的總質量是 Mc + m。最大直流母線電壓逆變器 Vmax = 320v導致峰值基本波形的運動 vmax = 外文翻譯( 譯 文) 20 Vmax=204V。Vbus表示 流入 三相逆變器 的 總線 電壓 。最后, 5 節(jié)提供了一些結論 。傳統(tǒng)的電梯門系統(tǒng),具有兩側門的機械連接到一個單一的電纜 , 由于機械耦合 ,使得兩個門 打開和關閉在一起。國內廠家大多選擇第二種方式,其原因在于生產規(guī)模較小,自己設計和制造微機控制裝置成本較高;而 PLC 可靠性高,程序設計方便靈活,抗干擾能力強、運行穩(wěn)定可靠等特點,所以現(xiàn)在的電梯控制系統(tǒng)廣泛采用可編程控制器來實現(xiàn)。鑒于其種種優(yōu)點,目前,電梯的繼電器控制方式己逐漸被 PLC 控制所代替。 在這種方法中, 每個電機 都是由 正交電流控制, 同時它 表明, 可以 直接電流控制。 the second control mode with programmable logic controller (PLC) to replace the puter control signal sets the election. From the control and performance, these two types of methods and there is no significant difference. Most of the domestic manufacturers to choose the second approach, because the smaller scale of production, their design and manufacture of high cost of puter control devices。 1. 概述 由繼電器組成的順序控制系統(tǒng)是最早的一種實現(xiàn)電梯控制的 方法。 隨著城市建設的不斷發(fā)展,高層建筑不斷增多,電梯在國民經濟和生活中有著廣泛的應用。正交電流正比于電機轉矩和電流直接用于磁場削弱。雙電機必須可靠地打開和關閉的電梯門的同時保持一個剛度在不同方向運動的 100000 N/m 有 “ 感覺 ” 的傳統(tǒng)電纜驅動門。然后, 對于 旋轉 電機 , 角位置是 h = x/req,角速度是由 ω= ?/req 給定, 轉動慣量 是 J = r2eq m,扭矩 是 τ= req F,負載轉矩 是 τ L = req FL。 然后 直接正交或 dq變換定義 為 ???????????????????? sbsapp ppqd iinn nnii )c os ()s i n( )s i n()c os ( ?? ?? ???????????????????? sbsapp ppqd vvnn nnvv )c os ()s i n( )s i n()c os ( ?? ?? 其中 id, iq和 vd, vq轉化的電流和電壓,分別在 dq (直接和正交)參照系。的 三相等效線性旋轉電 機 轉矩常數(shù) 發(fā)現(xiàn)的設置 Km = req KM = ()(32)Nm/A = 慣性矩 是 J =r2eqm =() =?103kgm2, LS, M, RS, np同為直線電機。控制方法是反饋 x, ?(? = x/req,ω =?/req)轉移函數(shù)從輸入 功能 u = F 轉變?yōu)? x 雙