【摘要】第1頁(yè)共3頁(yè)九年級(jí)數(shù)學(xué)二次函數(shù)鞏固提高(二次函數(shù))基礎(chǔ)練習(xí)試卷簡(jiǎn)介:全卷共8個(gè)選擇題,1個(gè)填空題,8個(gè)計(jì)算題,分值100分,測(cè)試時(shí)間90分鐘。本套試卷在立足二次函數(shù)的基礎(chǔ)上,又對(duì)二次函數(shù)的知識(shí)進(jìn)行鞏固與提高,主要考察了學(xué)生對(duì)二次函數(shù)的運(yùn)用情況。各個(gè)題目難度有階梯性,學(xué)生在做題過程中可以回顧本章知識(shí)點(diǎn),認(rèn)清自
2025-08-12 19:46
【摘要】第一篇:《二次函數(shù)》說課稿 《二次函數(shù)》說課稿 課題:二次函數(shù)(第一節(jié)課時(shí)) 一、教材分析: 1、教材所處的地位: 二次函數(shù)是滬科版初中數(shù)學(xué)九年級(jí)(上冊(cè))第22章的內(nèi)容,在此之前,學(xué)生在八年...
2024-10-17 20:06
【摘要】 九年級(jí)數(shù)學(xué)上冊(cè)《二次函數(shù)的圖象及性質(zhì)》說課稿 今天,我說課的內(nèi)容是北師大版《二次函數(shù)的圖象及性質(zhì)》復(fù)習(xí)課的第一課時(shí),根據(jù)新課標(biāo)的理念,對(duì)于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,...
2025-04-05 06:48
【摘要】第1頁(yè)共6頁(yè)九年級(jí)數(shù)學(xué)二次函數(shù)深化解析(二次函數(shù))基礎(chǔ)練習(xí)試卷簡(jiǎn)介:全卷測(cè)試時(shí)間30分鐘,滿分100分,共兩道大題:第一題選擇(11道,每道4分);第二題解答(4道,每道14分)。本套試卷立足課本,重點(diǎn)考查了同學(xué)們數(shù)形結(jié)合的能力:給出了函數(shù)圖象要會(huì)判斷二次函數(shù)解析式各項(xiàng)系數(shù)的正負(fù),反之知道了二次函數(shù)解析
【摘要】......專題三:含絕對(duì)值函數(shù)的最值問題1.已知函數(shù)(),若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.不等式化為即:(*)對(duì)任意的恒成立因?yàn)椋苑秩缦虑闆r討論:[來源:學(xué)科網(wǎng)ZXXK]①當(dāng)時(shí),不等式(*)②當(dāng)
2025-03-24 23:42
【摘要】二次函數(shù)在閉區(qū)間上的最值一、知識(shí)要點(diǎn):設(shè),求在上的最大值與最小值。當(dāng)時(shí),它的圖象是開口向上的拋物線,數(shù)形結(jié)合可得在[m,n]上的最值:,的最小值是的最大值是中的較大者。若,由在上是增函數(shù)則的最小值是,最大值是若,由在上是減函數(shù)則的最大值是,最小值是當(dāng)時(shí),可類比得結(jié)論。二、例題分析歸類:(一)、正向型1
2025-06-23 13:56
【摘要】成都市中考?jí)狠S題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過點(diǎn)E(0,﹣2)且平行于x軸,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;②試說明無論k取何值,
2025-04-04 04:25
【摘要】 實(shí)際問題與二次函數(shù) 一、選擇題(共4小題) 1.(如圖,有一塊邊長(zhǎng)為6cm的正三角形紙板,在它的三個(gè)角處分別截去一個(gè)彼此全等的箏形,再沿圖中的虛線折起,做成一個(gè)無蓋的直三棱柱紙盒,則該紙盒側(cè)面...
2025-04-05 05:50
【摘要】二次函數(shù)中絕對(duì)值問題的求解策略二次函數(shù)是高中函數(shù)知識(shí)中一顆璀璨的“明珠”,而它與絕對(duì)值知識(shí)的綜合,往往能夠演繹出一曲優(yōu)美的“交響樂”,故成為高考“新寵”。二次函數(shù)和絕對(duì)值所構(gòu)成的綜合題,由于知識(shí)的綜合性、題型的新穎性、解題方法的靈活性、思維方式的抽象性,學(xué)習(xí)解題時(shí)往往不得要領(lǐng),現(xiàn)從求解策略出發(fā),對(duì)近年來各類考試中的部分相關(guān)考題,進(jìn)行分類剖析,歸納出一般解題思考方法。一、適時(shí)用分類,討
2025-04-04 04:23