freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題訓(xùn)練經(jīng)典題目(及答案)(7)(更新版)

2025-04-05 05:52上一頁面

下一頁面
  

【正文】 對稱點,∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點P,∵點 N為AC上的動點,由三角形兩邊和大于第三邊,知當點N運動到點P時,BN+MN=BP+PM=BM,BN+MN的最小值為BM的長度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90176?!唷螾1P3P2=30176。此時就不能再往上焊接了,綜上所述總共可焊上5根鋼條.設(shè)AP1=a,作P2D⊥AB于點D,∵∠P2P1D=30176?!郈D2+DF2=FC2,∴CD2+22=62,∴CD=.故選:A.【點睛】本題考查了作圖基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.11.C解析:C【分析】根據(jù)BD、CE分別是AC、AB邊上的高,推導(dǎo)出;再結(jié)合題意,可證明,由此可得,;再經(jīng)得,從而證明AF⊥AQ;最后由勾股定理得,從而得到,即可得到答案.【詳解】如圖,CE和BD相較于H∵BD、CE分別是AC、AB邊上的高∴, ∴ ∴ ∵ ∴ 又∵BQ=AC且CF=AB∴ ∴,,故B、D結(jié)論正確;∵ ∴ ∴∴AF⊥AQ故A結(jié)論正確;∵∴ ∵ ∴ ∴ 故選:C.【點睛】本題考查了全等三角形、直角三角形、勾股定理、三角形的高等知識;解題的關(guān)鍵是熟練掌握全等三角形、直角三角形、勾股定理、三角形的高的性質(zhì),從而完成求解.12.B解析:B【解析】根據(jù)題意,如圖,∠AOB=30176。故選B.【點睛】本題主要考查了勾股定理的逆定理,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.20.D解析:D【分析】將容器側(cè)面展開,建立A關(guān)于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如圖:將圓柱展開,EG為上底面圓周長的一半,作A關(guān)于E的對稱點A39。D=∴則該圓柱底面周長為24cm.故選:D.【點睛】本題考查了平面展開最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關(guān)鍵.同時也考查了同學們的創(chuàng)造性思維能力.21.A解析:A【分析】先根據(jù)角平分線的性質(zhì)可證CD=DE,從而根據(jù)“HL”證明Rt△ACD≌Rt△AED,由DE為AB中線且DE⊥AB,可求AD=BD=3cm ,然后在Rt△BDE中,根據(jù)直角三角形的性質(zhì)即可求出BE的長.【詳解】∵AD平分∠BAC且∠C=90176。.故選:C.【點睛】本題考查了勾股定理的逆定理和方位角,屬于??碱}型,正確理解題意、熟練掌握勾股定理的逆定理是解題的關(guān)鍵.25.A解析:A【解析】試題分析:剪拼如下圖:乙故選A考點:剪拼,面積不變性,二次方根26.A解析:A【分析】根據(jù)勾股定理與正方形的性質(zhì)解答.【詳解】解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故選:A.【點睛】本題考查了勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.27.D解析:D【分析】由(ab)(a2b2c2)=0,可得:ab=0,或a2b2c2=0,進而可得a=b或a2=b2+c2,進而判斷△ABC的形狀為等腰三角形或直角三角形.【詳解】解:∵(ab)(a2b2c2)=0,∴ab=0,或a2b2c2=0,即a=b或a2=b2+c2,∴△ABC的形狀為等腰三角形或直角三角形.故選:D.【點睛】本題考查了勾股定理的逆定理以及等腰三角形的判定,解題時注意:有兩邊相等的三角形是等腰三角形,滿足a2+b2=c2的三角形是直角三角形.28.B解析:B【分析】已知為邊上的高,要求的面積,求得即可,求證,得,設(shè),則在中,根據(jù)勾股定理求,于是得到,即可得到答案.【詳解】解:由翻折變換的性質(zhì)可知,設(shè),則,在中,即,解得:,.故選:.【點睛】本題考查矩形的性質(zhì)、折疊的性質(zhì)、勾股定理等內(nèi)容,根據(jù)折疊的性質(zhì)得到是解題的關(guān)鍵.29.C解析:C【分析】根據(jù)等腰直角三角形的性質(zhì)可得出S2+S2=S1,寫出部分Sn的值,根據(jù)數(shù)的變化找出變化規(guī)律“Sn=()n?3”,依此規(guī)律即可得出結(jié)論.【詳解】解:在圖中標上字母E,如圖所示.∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.觀察,發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴Sn=()n?3.當n=2016時,S2016=()2016?3=()2013.故選:C.【點睛】本題考查了等腰直角三角形的性質(zhì)、勾股定理以及規(guī)律型中數(shù)的變化規(guī)律,解題的關(guān)鍵是找出規(guī)律“Sn=()n?3”.本題屬于中檔題,難度不大,解決該題型題目時,寫出部分Sn的值,根據(jù)數(shù)值的變化找出變化規(guī)律是關(guān)鍵.30.C解析:C【分析】當E1F1在直線EE1上時,得到AE=14,PE=9,由勾股定理求得AP的長;當E1F1在直線B2E1上時,兩直角邊分別為17和6,再利用勾股定理求AP的長,兩者進行比較即可確定答案【詳解】① 當展開方法如圖1時,AE=8+6=14cm,PE=6+3=9cm,由勾股定理得② 當展開方法如圖2時,AP1=8+6+3=17cm,PP1=6cm, 由勾股定理得∵∴螞蟻爬行的最短距離是,【點睛】此題考察正方體的展開圖及最短路徑,注意將正方體沿著不同棱線剪開時得到不同的平面圖形,路徑結(jié)果是不同
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1