【摘要】3.2平面向量基本定理,)1.問題導(dǎo)航(1)平面向量基本定理與向量的線性運(yùn)算有何關(guān)系?(2)在平面向量基本定理中為何要求向量e1,e2不共線?(3)對(duì)于同一向量a,若基底不同,則表示這一向量a的實(shí)數(shù)λ1,λ2的值是否相同?2.例題導(dǎo)讀P86例,學(xué)會(huì)應(yīng)用平面向量基本定理解決實(shí)
2024-11-28 01:58
【摘要】第二章平面向量2一、向量的坐標(biāo)運(yùn)算課型A例1.已知向量a=(1,3),b=(3,n),若2a–b與b共線,則實(shí)數(shù)n的值是(B)A.6C.323?D323?例2.已知向量??52,5,2,1?????babaa,則b等于(
2024-12-05 06:38
【摘要】章末質(zhì)量評(píng)估(二)(時(shí)間:90分鐘滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.給出下列等式:(1)a·0=0;(2)0·a=0;(3)若a,b同向共線,則a·b=|a|
2024-11-27 23:35
【摘要】階段性測(cè)試題二(第二章綜合測(cè)試題)本試卷分第Ⅰ卷選擇題和第Ⅱ卷非選擇題兩部分,滿分150分,時(shí)間120分鐘。第Ⅰ卷(選擇題共60分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,其中有且僅有一個(gè)是正確的.)1.(2021·山東煙臺(tái)高一期末測(cè)試)已知向量a=(
2024-11-28 01:11
【摘要】,[學(xué)生用書單獨(dú)成冊(cè)])[]1.設(shè)e1,e2是平面內(nèi)所有向量的一組基底,則下列四組向量中,不能作為基底的是()A.2e1+e2和2e1-e2B.3e1-2e2和4e2-6e1C.e1+2e2和e2+2e1D.e2和e1+e2解析:選B中4e2-6e1=-2
2024-11-28 00:13
【摘要】教學(xué)內(nèi)容:§平面向量的基本定理及坐標(biāo)表示(1)教學(xué)目標(biāo)1.理解平面向量的基本定理,會(huì)作出由已知一組基底所表示的向量;2.理解向量夾角及垂直的概念;3.理解向量的正交分解,感受正交分解的實(shí)際意義,掌握向量的坐標(biāo)表示。本節(jié)重點(diǎn)平面向量的基本定理,向量的正交分解及坐標(biāo)表示本節(jié)難點(diǎn)平面向量的
2024-11-20 03:14
【摘要】平面向量數(shù)量積的物理背景及其含義【學(xué)習(xí)要求】1.掌握平面向量數(shù)量積的運(yùn)算律及常用的公式.2.會(huì)利用向量數(shù)量積的有關(guān)運(yùn)算律進(jìn)行計(jì)算或證明.學(xué)習(xí)重點(diǎn):面向量數(shù)量積的運(yùn)算律及常用的公式學(xué)習(xí)難點(diǎn):利用向量數(shù)量積的有關(guān)運(yùn)算律進(jìn)行計(jì)算或證明.【學(xué)法指導(dǎo)】引進(jìn)向量的數(shù)量積以后,考察一下這種運(yùn)算的運(yùn)算律是非常必要的.向量a、b的數(shù)量積a
2024-12-05 06:47
【摘要】課題:平面向量的數(shù)量積(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握平面向量數(shù)量積的坐標(biāo)表示;2、掌握向量垂直的坐標(biāo)表示的等價(jià)條件。【課前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2024-12-05 00:28
【摘要】[精練精析]平面向量的實(shí)際背景及基本概念素能綜合檢測(cè)一、選擇題(每題4分,共16分)1.(2021·泉州高一檢測(cè))下列說(shuō)法正確的是()①零向量的長(zhǎng)度為零,方向是任意的②若是單位向量,則③若非零向量是共線向量,則A,B,C,D四點(diǎn)共線(A)①(B)②(C)③(
2024-12-02 10:15