freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學試卷易錯易錯壓軸勾股定理選擇題題分類匯編(7)(更新版)

2025-04-05 05:36上一頁面

下一頁面
  

【正文】 .6 C. D.810.如圖,在矩形ABCD中,AB=3,BC=4,在矩形內(nèi)部有一動點P滿足S△PAB=3S△PCD,則動點P到點A,B兩點距離之和PA+PB的最小值為( ) A.5 B. C. D.11.如圖,在平行四邊形ABCD中,∠DBC=45176。初中數(shù)學試卷易錯易錯壓軸選擇題精選:勾股定理選擇題題分類匯編(7)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.如圖,已知中,在BC邊上取一點P(點P不與點B、C重合),使得成為等腰三角形,則這樣的點P共有( ). A.1個 B.2個 C.3個 D.4個2.若直角三角形的三邊長分別為、a、且a、b都是正整數(shù),則三角形其中一邊的長可能為()A.22 B.32 C.62 D.823.在平面直角坐標系中,已知平行四邊形ABCD的點A(0,﹣2)、點B(3m,4m+1)(m≠﹣1),點C(6,2),則對角線BD的最小值是(  )A.3 B.2 C.5 D.64.我國古代偉大的數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為( ③BE⊥EC。2,∵AB>0,∴AB=2米,∴小巷的寬度為:+2=(米).故選:D.【點睛】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.7.C解析:C【分析】根據(jù)AC=2AB,點D是AC的中點求出AB=CD,再根據(jù)△ADE是等腰直角三角形求出AE=DE,并求出∠BAE=∠CDE=135176?!唷螪EC+∠BED=90176?!唷螦BD+∠CBE=90176。∵FG=1,∴BF=2FG=2,∵∠BEC=75176。AD=2=.故選D.25.D解析:D【分析】根據(jù)題意,可分為已知的兩條邊的長度為兩直角邊,或一直角邊一斜邊兩種情況,根據(jù)勾股定理求斜邊即可.【詳解】當3和4為兩直角邊時,由勾股定理,得:;當3和4為一直角邊和一斜邊時,可知4為斜邊.∴斜邊長為或5.故選:D.【點睛】本題考查了勾股定理,關(guān)鍵是根據(jù)題目條件進行分類討論,利用勾股定理求解.26.A解析:A【分析】根據(jù)線段垂直平分線的性質(zhì)得到DA=DB,根據(jù)勾股定理求出BD,得到CD的長,根據(jù)三角形的面積公式計算,得到答案.【詳解】解:∵點D在線段AB的垂直平分線上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面積=CDBC=34=6,∵P是BD的中點,∴S△PBC=S△BCD=3,故選:A.【點睛】本題考查的是線段垂直平分線的性質(zhì)、直角三角形的性質(zhì)、勾股定理,掌握線段垂直平分線上的點到線段兩端點的距離相等是解題的關(guān)鍵.27.C解析:C【分析】根據(jù)圖形翻折變換的性質(zhì)可知,AE=BE,設(shè)AE=x,則BE=x,CE=8x,再在Rt△BCE中利用勾股定理即可求出BE的長度.【詳解】解:∵△ADE翻折后與△BDE完全重合,∴AE=BE,設(shè)AE=x,則BE=x,CE=8﹣x,在Rt△BCE中,BE2=BC2+CE2,即x2=62+(8﹣x)2,解得,x=,∴BE=.故選:C.【點睛】本題考查了圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變.28.B解析:B【分析】設(shè)斜邊為c,根據(jù)勾股定理得出c=,再由三角形的面積公式即可得出結(jié)論.【詳解】解:設(shè)斜邊為c,根據(jù)勾股定理得出c=,∵ab=ch,∴ab=?h,即a2b2=a2h2+b2h2,∴=+,即+=.故選:B.【點睛】本題考查勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題關(guān)鍵.29.C解析:C【分析】三角形內(nèi)角和180176。是直角三角形;B中,三邊之比為3:4:5,設(shè)這三條邊長為:3x、4x、5x,滿足:,是直角三角形;C中,三邊之比為8:16:17,設(shè)這三條邊長為:8x、16x、17x,不滿足勾股定理逆定理,不是直角三角形故選:C【點睛】本題考查直角三角形的判定,常見方法有2種;(1)有一個角是直角的三角形;(2)三邊長滿足勾股定理逆定理.30.C解析:C【分析】設(shè),對應的邊長為,根據(jù)題意,通過等邊三角形和勾股定理的性質(zhì),得,從而計算得到;設(shè),對應的邊長為,通過圓形面積和勾股定理性質(zhì),得,從而計算得到,即可得到答案.【詳解】分別以直角三角形三邊為邊向外作等邊三角形,面積分別為,則,對應的邊長設(shè)為,根據(jù)題意得: ∴,∵ ∴∴以直角三角形三邊長為直徑向外作半圓,面積分別為,則,對應的邊長設(shè)為,根據(jù)題意得:∴,∵∴∴∴故選:C.【點睛】本題考查了勾股定理、等邊三角形、圓形面積的知識;解題的關(guān)鍵是熟練掌握勾股定理、等邊三角形面積計算的性質(zhì),從而完成求解.
點擊復制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1