freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

專題07-不等式-【知識手冊】高考數(shù)學(xué)復(fù)習(xí)之考點(diǎn)卡片(更新版)

2025-04-05 05:34上一頁面

下一頁面
  

【正文】 .點(diǎn)評:二元一次不等式(組)表示平面區(qū)域的判斷方法:直線定界,測試點(diǎn)定域.注意不等式中不等號有無等號,無等號時直線畫成虛線,有等號時直線畫成實(shí)線.測試點(diǎn)可以選一個,也可以選多個,若直線不過原點(diǎn),則測試點(diǎn)常選取原點(diǎn).題型二:求線性目標(biāo)函數(shù)的最值典例2:設(shè)x,y滿足約束條件:,求z=x+y的最大值與最小值.分析:作可行域后,通過平移直線l0:x+y=0來尋找最優(yōu)解,求出目標(biāo)函數(shù)的最值.解答:先作可行域,如圖所示中△ABC的區(qū)域,且求得A(5,2)、B(1,1)、C(1,),作出直線l0:x+y=0,再將直線l0平移,當(dāng)l0的平行線l1過點(diǎn)B時,可使z=x+y達(dá)到最小值;當(dāng)l0的平行線l2過點(diǎn)A時,可使z=x+y達(dá)到最大值.故zmin=2,zmax=7.點(diǎn)評:(1)線性目標(biāo)函數(shù)的最大(?。┲狄话阍诳尚杏虻捻旤c(diǎn)處取得,也可能在邊界處取得.(2)求線性目標(biāo)函數(shù)的最優(yōu)解,要注意分析線性目標(biāo)函數(shù)所表示的幾何意義,明確和直線的縱截距的關(guān)系.題型三:實(shí)際生活中的線性規(guī)劃問題典例3:某農(nóng)戶計(jì)劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價如下表: 年產(chǎn)量/畝年種植成本/畝每噸售價黃瓜4噸韭菜6噸為使一年的種植總利潤(總利潤=總銷售收入﹣總種植成本)最大,那么黃瓜和韭菜的種植面積(單位:畝)分別為( ?。〢.50,0 B.30,20 C.20,30 D.0,50分析:根據(jù)線性規(guī)劃解決實(shí)際問題,要先用字母表示變量,找出各量的關(guān)系列出約束條件,設(shè)出目標(biāo)函數(shù),轉(zhuǎn)化為線性規(guī)劃問題.解析 設(shè)種植黃瓜x畝,韭菜y畝,則由題意可知求目標(biāo)函數(shù)z=x+,根據(jù)題意畫可行域如圖陰影所示.當(dāng)目標(biāo)函數(shù)線l向右平移,移至點(diǎn)A(30,20)處時,目標(biāo)函數(shù)取得最大值,即當(dāng)黃瓜種植30畝,韭菜種植20畝時,種植總利潤最大.故答案為:B點(diǎn)評:線性規(guī)劃的實(shí)際應(yīng)用問題,需要通過審題理解題意,找出各量之間的關(guān)系,最好是列成表格,找出線性約束條件,寫出所研究的目標(biāo)函數(shù),轉(zhuǎn)化為簡單的線性規(guī)劃問題,再按如下步驟完成:(1)作圖﹣﹣畫出約束條件所確定的平面區(qū)域和目標(biāo)函數(shù)所表示的平行直線系中過原點(diǎn)的那一條l;(2)平移﹣﹣將l平行移動,以確定最優(yōu)解的對應(yīng)點(diǎn)A的位置;(3)求值﹣﹣解方程組求出A點(diǎn)坐標(biāo)(即最優(yōu)解),代入目標(biāo)函數(shù),即可求出最值.題型四:求非線性目標(biāo)函數(shù)的最值典例4:(1)設(shè)實(shí)數(shù)x,y滿足,則的最大值為  .(2)已知O是坐標(biāo)原點(diǎn),點(diǎn)A(1,0),若點(diǎn)M(x,y)為平面區(qū)域上的一個動點(diǎn),則|+|的最小值是 ?。治觯号c二元一次不等式(組)表示的平面區(qū)域有關(guān)的非線性目標(biāo)函數(shù)的最值問題的求解一般要結(jié)合給定代數(shù)式的幾何意義來完成.解答:(1)表示點(diǎn)(x,y)與原點(diǎn)(0,0)連線的斜率,在點(diǎn)(1,)處取到最大值.(2)依題意得,+=(x+1,y),|+|=可視為點(diǎn)(x,y)與點(diǎn)(﹣1,0)間的距離,在坐標(biāo)平面內(nèi)畫出題中的不等式組表示的平面區(qū)域,結(jié)合圖形可知,在該平面區(qū)域內(nèi)的點(diǎn)中,由點(diǎn)(﹣1,0)向直線x+y=2引垂線的垂足位于該平面區(qū)域內(nèi),且與點(diǎn)(﹣1,0)的距離最小,因此|+|的最小值是=.故答案為:(1)(2).點(diǎn)評:常見代數(shù)式的幾何意義有(1)表示點(diǎn)(x,y)與原點(diǎn)(0,0)的距離;(2)表示點(diǎn)(x,y)與點(diǎn)(a,b)之間的距離;(3)表示點(diǎn)(x,y)與原點(diǎn)(0,0)連線的斜率;(4)表示點(diǎn)(x,y)與點(diǎn)(a,b)連線的斜率.【解題方法點(diǎn)撥】1.畫出平面區(qū)域.避免失誤的重要方法就是首先使二元一次不等式標(biāo)準(zhǔn)化.2.在通過求直線的截距的最值間接求出z的最值時,要注意:當(dāng)b>0時,截距取最大值時,z也取最大值;截距取最小值時,z也取最小值;當(dāng)b<0時,截距取最大值時,z取最小值;截距取最小值時,z取最大值.9.其他不等式的解法【知識點(diǎn)的知識】不等式的解法(1)整式不等式的解法(根軸法).步驟:正化,求根,標(biāo)軸,穿線(偶重根打結(jié)),定解.特例:①一元一次不等式ax>b解的討論;②一元二次不等式ax2+bx+c>0(a≠0)解的討論.(2)分式不等式的解法:先移項(xiàng)通分標(biāo)準(zhǔn)化,則.(3)無理不等式:轉(zhuǎn)化為有理不等式求解.(4)指數(shù)不等式:轉(zhuǎn)化為代數(shù)不等式(5)對數(shù)不等式:轉(zhuǎn)化為代數(shù)不等式(6)含絕對值不等式①應(yīng)用分類討論思想去絕對值; ②應(yīng)用數(shù)形思想;③應(yīng)用化歸思想等價轉(zhuǎn)化.注:常用不等式的解法舉例(x為正數(shù)):10.基本不等式及其應(yīng)用【概述】 基本不等式主要應(yīng)用于求某些函數(shù)的最值及證明不等式.其可表述為:兩個正實(shí)數(shù)的幾何平均數(shù)小于或等于它們的算術(shù)平均數(shù).公式為:≥(a≥0,b≥0),變形為ab≤()2或者a+b≥2.常常用于求最值和值域.【實(shí)例解析】例1:下列結(jié)論中,錯用基本不等式做依據(jù)的是. A:a,b均為負(fù)數(shù),則. B:. C:. D:.解:根據(jù)均值不等式解題必須滿足三個基本條件:“一正,二定、三相等”可知A、B、D均滿足條件.對于C選項(xiàng)中sinx≠177。(x)=ex﹣1﹣1,當(dāng)x>1時,h
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1