【摘要】X??古埃及人曾用下面的方法得到直角按照這種做法真能得到一個(gè)直角三角形嗎??古埃及人曾用下面的方法得到直角:用13個(gè)等距的結(jié),把一根繩子分成等長(zhǎng)的12段,然后以3個(gè)結(jié),4個(gè)結(jié),5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角。345請(qǐng)同學(xué)們觀察,這個(gè)三角形的三條邊
2025-01-19 12:33
【摘要】第1頁(yè)共2頁(yè)初中數(shù)學(xué)勾股定理及其逆定理基礎(chǔ)題一、單選題(共9道,每道11分)5和7,則斜邊長(zhǎng)的平方為()D.12B所代表正方形的面積是(),不能作為直角三角形三邊長(zhǎng)度的是()=7,b=24,c=25
2025-08-11 21:25
【摘要】勾股定理的逆定理第十七章勾股定理導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級(jí)數(shù)學(xué)下(RJ)教學(xué)課件第1課時(shí)勾股定理的逆定理學(xué)習(xí)目標(biāo)、定理的概念、關(guān)系及勾股數(shù).(重點(diǎn)),能利用勾股定理的逆定理判斷一個(gè)三角形是直角三角形.(難點(diǎn))導(dǎo)入
2025-06-20 05:29
【摘要】THANKS
2025-03-12 15:34
2025-01-19 20:49
【摘要】勾股定理及其逆定理的應(yīng)用洛陽(yáng)市第二外國(guó)語(yǔ)學(xué)校王大清溫故知新①勾股定理及其逆定理,你能敘述嗎?②下列各組數(shù)中不能作為直角三角形三邊的是()43c1b45a???17c15b8a???A.B.15c14b13a???C.???D.③在△ABC中,AB=7,BC=24,AC=
2024-11-06 17:01
【摘要】勾股定理及其逆定理一、知識(shí)點(diǎn)1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)2、勾股定理的逆定理:如果三角形的三邊長(zhǎng):a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。3、滿足的三個(gè)正整數(shù),稱為勾股數(shù)。二、典型題型1、求線段的長(zhǎng)度題型2、判斷直角三角形題型3、求最短距離三、主要數(shù)學(xué)思想和方法(1
2025-06-22 04:05
【摘要】勾股定理的逆定理1.理解并掌握勾股定理的逆定理;2.利用勾股定理的逆定理判定一個(gè)三角形是否直角三角形.一、學(xué)習(xí)目標(biāo)本節(jié)的重點(diǎn)是:勾股定理的逆定理.本節(jié)的難點(diǎn)是:用勾股定理的逆定理判斷一個(gè)三角形是否直角
2025-08-04 14:08
【摘要】勾股定理的逆定理第1課時(shí)人教版初中數(shù)學(xué)八年級(jí)下冊(cè)第十八章勾股定理情境引入用一根釘上13個(gè)等距離結(jié)的細(xì)繩子,讓同學(xué)操作,用釘子釘在第一個(gè)結(jié)上,再釘在第4個(gè)結(jié)上,再釘在第8個(gè)結(jié)上,最后將第十三個(gè)結(jié)與第一個(gè)結(jié)釘在一起.然后用角尺量出最大角的度數(shù).可以發(fā)現(xiàn)這個(gè)三角形是直角三角形.課中探究
2024-11-21 02:26
【摘要】第一篇:勾股定理的逆定理教學(xué)設(shè)計(jì) 勾股定理的逆定理教學(xué)設(shè)計(jì) 目標(biāo)和目標(biāo)解析 (1)理解勾股定理的逆定理.(2)了解互逆命題、 達(dá)成目標(biāo)(1)的標(biāo)志是學(xué)生經(jīng)歷“實(shí)驗(yàn)測(cè)量-猜想-論證”的定理探...
2024-11-04 17:57
【摘要】勾股定理的逆定理第1課時(shí)勾股定理的逆定理滬科版·八年級(jí)數(shù)學(xué)下冊(cè)狀元成才路狀元成才路新課導(dǎo)入勾股定理如果直角三角形兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.提問(wèn)如果將條件和結(jié)論反過(guò)來(lái),這個(gè)命題還成立嗎?狀元成才路
2025-03-13 03:09
【摘要】勾股定理的逆定理教材分析“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了
2024-12-09 03:57