【摘要】北師大.數(shù)學八年級上冊第六章XYO1y=kx+b(k≠0)x/噸y/元O123456100040005000202130006000l1反映了某公司產(chǎn)品的銷售收入與銷售量的關(guān)系,根據(jù)圖意填空:L1當銷售量為2噸時,銷售收入=
2024-11-30 08:27
【摘要】?1.拋物線y=ax2+bx+c經(jīng)過點(0,0)與(12,0),最高點縱坐標是3,求這條拋物線的表達式______?2.若a<0,b>0,c<0,△<0,那么拋物線y=ax2+bx+c經(jīng)過象限.?3.在平原上,一門迫擊炮發(fā)射的一發(fā)炮彈飛行的高度y(m)與飛行時間x(s)的關(guān)
2024-11-30 14:07
【摘要】九年級數(shù)學下冊教學目標:1.能根據(jù)實際問題列出函數(shù)關(guān)系式、2.使學生能根據(jù)問題的實際情況,確定函數(shù)自變量x的取值范圍。3.通過建立二次函數(shù)的數(shù)學模型解決實際問題,培養(yǎng)學生分析問題、解決問題的能力,提高學生用數(shù)學的意識。重點難點:根據(jù)實際問題建立二次函數(shù)的數(shù)學模型,并確定二次函數(shù)自變量的范圍,既是教學的重點又
2024-12-08 21:54
【摘要】(第三課時)知識回顧應(yīng)用、對稱軸和頂點坐標。(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2樣的平移得到。函數(shù)y=ax2+bx+c的圖象我們知道,作出二次函數(shù)y=3x2的圖象,通過平移拋物線y=3x2可以得到二次函數(shù)y=3x2-6x+5的圖象.那
2024-11-26 19:22
【摘要】北師大版九年級下冊第二章《二次函數(shù)》有的放矢學習目標?1、會用描點法畫二次函數(shù)y=x2和y=-x2的圖象;?2、根據(jù)函數(shù)y=x2和y=-x2圖象,直觀地了解它的性質(zhì).數(shù)形結(jié)合,直觀感受在二次函數(shù)y=x2中,y隨x的變化而變化的規(guī)律是什么??觀察y=x2的表達式,選擇適當x值,并計算相應(yīng)的y值,完成下表
2024-12-07 15:24
【摘要】第二章二次函數(shù)1.二次函數(shù)所描述的關(guān)系1.二次函數(shù)的概念形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù).2.列二次函數(shù)關(guān)系式列函數(shù)表達式的基本思路:(1)認真審題,弄清題中的自變量和因變量;(2)確定一共有幾個條件,每個條件和變量可以列出什么意義的代數(shù)式;(3)確定等量關(guān)
2024-12-08 14:25
【摘要】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新回顧與思考噴泉(1)噴泉(2)九年級數(shù)學(下)第二章《二次函數(shù)》§2、1二次函數(shù)所描述的關(guān)系二次
2024-11-30 08:35
【摘要】yx(1)正比例函數(shù)y=kx的圖象有什么特點?(2)你作正比例函數(shù)y=kx的圖象時描了幾個點(3)直線,y=x,y=3x中,哪一個與x軸正方向所成的銳角最大?哪一個與x軸正方向所成的銳角最小?想一想正比例函數(shù)圖象的性質(zhì)在同一直角坐標系內(nèi)分別作出一次函數(shù)y=2x+6,y=-x
2025-10-29 03:04
【摘要】二次函數(shù)復習說一說:通過二次函數(shù)的學習,你應(yīng)該學什么?你學會了什么?1、理解二次函數(shù)的概念;2、會用描點法畫出二次函數(shù)的圖象;3、會用配方法和公式確定拋物線的開口方向,對稱軸,頂點坐標;4、會用待定系數(shù)法求二次函數(shù)的解析式;5、能用二次函數(shù)的知識解決生活中的實際問題及簡單的綜合運用。
2024-12-08 05:33
【摘要】章末熱點考向?qū)n}專題一恰當選擇確定二次函數(shù)表達式的方法求二次函數(shù)的解析式時,通常有三種設(shè)法:(1)一般式:y=ax2+bx+c;(2)頂點式:y=a(x-h(huán))2+k;(3)交點式:y=a(x-x1)(x-x2),其中x1、x2是拋物線與x軸交點的橫坐標.例1:已知二次函數(shù)圖象
【摘要】二次函數(shù)y=ax2+c的圖象與性質(zhì)(重點)y=ax2+c函數(shù)c0c0圖象函數(shù)y=ax2+c開口方向(1)向______(2)向______對稱軸y軸(直線x=0)
【摘要】如何運用二次函數(shù)求實際問題中的最大值或最小值?復習思考?首先應(yīng)當求出函數(shù)解析式和自變量的取值范圍,然后通過配方變形,或利用公式求它的最大值或最小值.?注意:有此求得的最大值或最小值對應(yīng)的字變量的值必須在自變量的取值范圍內(nèi).例2:如圖,B船位于A船正東26km處,現(xiàn)在A,B兩船同時出
2024-11-28 00:20