【摘要】二次函數(shù)的應(yīng)用一、解答題(共10小題;共130分)1.某種商品每天的銷售利潤(元)與銷售單價(元)之間滿足關(guān)系:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于元?
2024-12-09 02:20
【摘要】知識回顧:時,圖象將發(fā)生怎樣的變化?二次函數(shù)y=ax2y=a(x+m)2y=a(x+m)2+k1、頂點坐標(biāo)?(0,0)(–m,0)(–m,k)2、對稱軸?y軸(直線x=0)(直線x=–m)(直線x=–m)3、平移問題?一般地,函數(shù)y=ax2的圖象先
2024-11-26 18:55
【摘要】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第2課時最大利潤問題課堂達(dá)標(biāo)一、選擇題第2課時最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達(dá)式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00
【摘要】二次函數(shù)的性質(zhì)(第一課時)知識與技能:1、使學(xué)生掌握二次函數(shù)的函數(shù)值隨自變量變化而變化的規(guī)律;2、使學(xué)生了解二次函數(shù)的最大值和最小值的意義,掌握判定二次函數(shù)最大值和最小值的方法,并能求出最大值和最小值
2024-11-30 08:58
【摘要】第1章二次函數(shù)1.4二次函數(shù)的應(yīng)用第2課時利用二次函數(shù)解決距離、利潤最值問題筑方法勤反思第1章二次函數(shù)學(xué)知識學(xué)知識二次函數(shù)的應(yīng)用知識點一求含有根號的代數(shù)式的最值1.代數(shù)式x2+4x+10的最小值是________.【解析】x2+
2025-06-16 12:04
2025-06-16 08:51
【摘要】第1頁共2頁九年級數(shù)學(xué)二次函數(shù)的實際應(yīng)用(二次函數(shù))基礎(chǔ)練習(xí)試卷簡介:試卷簡介:全卷共2個計算題,7個解答題,分值100分,測試時間60分鐘。本套試卷立足基礎(chǔ),主要考察了學(xué)生對二次函數(shù)在實際應(yīng)用中的運用情況。各個題目難度有階梯性,學(xué)生在做題過程中可以回顧本章知識點,認(rèn)清自己對知識的掌握及靈活運用程度。學(xué)
2024-08-21 19:46
【摘要】第一篇:二次函數(shù)的應(yīng)用教案 第二章二次函數(shù) 二次函數(shù)的應(yīng)用(1) 一、知識點 、教學(xué)目標(biāo)知識與技能: 能夠分析和表示不同背景下實際問題中變量之間的二次函數(shù)關(guān)系,并能夠運用二次函數(shù)的知識解決實...
2024-10-24 21:13
【摘要】第二章二次函數(shù)二次函數(shù)的應(yīng)用(第2課時)探究活動一?服裝廠生產(chǎn)某品牌的T恤衫成本是每件10元,根據(jù)市場調(diào)查,以單價13元批發(fā)給經(jīng)銷商,經(jīng)銷商愿意經(jīng)銷5000件,并且表示每件降價,愿意多經(jīng)銷500件.?請你幫助分析,廠家批發(fā)單價是多少時可以獲利最多?回顧在學(xué)習(xí)一元二次方程的應(yīng)用時遇到過有
2024-11-21 01:10
【摘要】第1章二次函數(shù)1.4二次函數(shù)的應(yīng)用第3課時二次函數(shù)與一元二次方程筑方法勤反思第1章二次函數(shù)學(xué)知識學(xué)知識二次函數(shù)的應(yīng)用知識點二次函數(shù)與一元二次方程的關(guān)系.二次函數(shù)的圖象與x軸的交點坐標(biāo):二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點的橫坐標(biāo)
【摘要】義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書浙江版《數(shù)學(xué)》九年級上冊請用適當(dāng)?shù)暮瘮?shù)解析式表示下列問題情境中的兩個變量y與x之間的關(guān)系.(1)圓的面積y(cm2)與圓的半徑x(cm)合作學(xué)習(xí):(2)王先生存人銀行2萬元,先存一個一年定期,一年后銀行將本息自動轉(zhuǎn)存為又一個一年定期,設(shè)一年定期的年存款利率為x,兩年后王先生共得本息
2024-11-06 21:12
【摘要】二次函數(shù)的應(yīng)用(1)-----解析式的求法(1)已知二次函數(shù)圖象經(jīng)過點(-1,-6)、(1、-2)和(2,3),求這個二次函數(shù)的解析式。(2)已知拋物線的頂點為(-1,-3),與y軸的交點為(0,-5),求此拋物線的解析式(3)已知拋物
2024-11-30 14:39