【摘要】Oxya引入:,點(diǎn)A可以用什么來(lái)表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2025-11-08 15:05
【摘要】向量的減法1、向量加法的三角形法則baOaaaaaaaabbbbbbbBbaA注意:a+b各向量“首尾相連”,和向量由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn).溫故知新baAaaaaaaaabbb
2025-11-09 12:10
【摘要】向量的減法1、向量加法的三角形法則baOaaaaaaaabbbbbbbBbaA注意:a+b各向量“首尾相連”,和向量由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn).溫故知新baAaaaaaaaabbbB
【摘要】《高中數(shù)學(xué)》選修2-2《直接證明與間接證明-反證法》教學(xué)目標(biāo)?結(jié)合已經(jīng)學(xué)過(guò)的數(shù)學(xué)實(shí)例,了解間接證明的一種基本方法——反證法;了解反證法的思考過(guò)程、特點(diǎn).?教學(xué)重點(diǎn):會(huì)用反證法證明問(wèn)題;了解反證法的思考過(guò)程.?教學(xué)難點(diǎn):根據(jù)問(wèn)題的特點(diǎn),選擇適當(dāng)?shù)淖C明方法.??.methodlsy
2025-07-17 22:28
【摘要】1共線向量與共面向量北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點(diǎn)E是面A’C’的中心,求下列各式中
2025-11-09 00:48
【摘要】課題:向量的減法班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量減法的含義;2、能用三角形法則和平行四邊形法則求出兩向量的差;【課前預(yù)習(xí)】1、如何用向量加法的三角形法則和平行四邊形法則作兩向量的和?2、??ABOA;???CA
2025-11-11 01:05
【摘要】由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,利用向量方法可以解決平面幾何中的一些問(wèn)題。平面幾何中的向量方法例1、證明平行四邊形四邊平方和等于兩對(duì)角線平方和ABDC已知:平行四邊形ABCD。求證:
2025-08-01 17:29
【摘要】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會(huì)用它們進(jìn)行向量計(jì)算【學(xué)習(xí)重難點(diǎn)】重點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律難點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
【摘要】2.向量的減法上節(jié)課我們學(xué)習(xí)了向量加法的概念,并給出了求作和向量的方法.如果河水的流速為2km/n,要想船以6km/n的速度垂直駛向?qū)Π叮绾吻蟠旧淼乃俣群头较蚰兀?.與a______________的向量,叫做a的相反向量,記為________,零向量的相反向量是________.答案:長(zhǎng)度相等
2025-11-26 10:16
【摘要】直線的斜率為了刻畫一條直線的位置,除了點(diǎn)之外,還有直線的傾斜程度.通過(guò)建立直角坐標(biāo)系,點(diǎn)可以用坐標(biāo)來(lái)刻畫,那么,直線的傾斜程度如何來(lái)刻畫呢?直線高度寬度?高度坡度寬度想一想:樓梯的傾斜程度是怎樣刻畫的?可以看出:如果樓梯臺(tái)階的寬度不變,那么每
2025-11-08 15:21
【摘要】2.2向量的線性運(yùn)算2.向量的加法情景:請(qǐng)看如下問(wèn)題:(1)如圖(1),某人從A到B,再?gòu)腂按原來(lái)的方向到C,則兩次位移的和AB→+BC→應(yīng)該是________.(2)如圖(2),飛機(jī)從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應(yīng)該是________.(3)如圖
【摘要】向量專項(xiàng)練習(xí)參考答案一、選擇題1.(文)(2014·鄭州月考)設(shè)向量a=(m,1),b=(1,m),如果a與b共線且方向相反,則m的值為( )A.-1 B.1C.-2 D.2[答案] A[解析] 設(shè)a=λb(λ0),即m=λ且1==±1,由于λ0,∴m=-1.[點(diǎn)評(píng)] ,若a=(x1,y1),b=(x1,y2),則a
2025-04-04 05:12