【正文】
variable y. Curve fitting is to seek to solve the problem of (1) to adapt the laws of the analytical expression of the backgroundy=f(x,b),(2) Making best approximation in some sense or fit (1), (x, b) is called fitting model。外推法是指使用擬合曲線的超出范圍的觀測數(shù)據(jù),并受程度的不確定性,因為它可能反映了用于構(gòu)造曲線一樣,因為它反映了觀測數(shù)據(jù)的方法。曲線擬合要解決的問題是尋求與(1)的背景規(guī)律相適應解析表達式 y=f(x,b),(2) 使它在某種意義下最佳地逼近或擬合(1),?(x,b)稱為擬合模型;為待定參數(shù),當b)僅在?中線性地出現(xiàn)時,稱模型為線性的,否則為非線性的。模型的選擇對于給定的離散數(shù)據(jù)(1),需恰當?shù)剡x取一般模型(2)中函數(shù)f(x,b)的類別和具體形式,這是擬合效果的基礎(chǔ)。(二)進行變量變換Y’=f(Y),X’=g(X)()使變換后的兩個變量呈直線關(guān)系。反之,可通過對模型(3)中基函數(shù)g0,g1,…,gn(個數(shù)和種類)的不同選取,分別進行相應的擬合并擇其效果佳者。當參數(shù)b)使T(b))或Q(b))達到最小時,相應的(2)分別稱為在加權(quán)切比雪夫意義或加權(quán)最小二乘意義下對 (1)的擬合,后者在計算上較簡便且最為常用。目前常見的一些曲線擬合方法中, 對各個物理量的處理有失公平性原則,通常是在處理中確保某一個物理量的擬合誤差達到“最小”, 而沒有考慮到其它物理量的擬合誤差。英 文 翻 譯系 別專 業(yè)班 級學生姓名學 號指導教師報告日期Data Curve Fitting Based on MATLAB Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points,possibly subject to constraints. Curve fitting can involve eitherinterpolation, where an exact fit to the data is required, or smoothing, in which a smooth function is constructed that approximately fits the data. A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors. Fitted curves can be used as an aid for data visualization, to infer values of a function where no data are available, and to summarize the relationships among two or more refers to the use of a fitted curve beyond the range of the observed data, and is subject to adegree of uncertaintysince it may reflect the me