【摘要】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準(zhǔn)線方程、焦點(diǎn)坐標(biāo)等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實(shí)軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【摘要】第一篇:2014年高考題答案 2014年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷) 語文試題參考答案 第I卷 一、1.A2.D3.B4.D5.B 二、6.A7.C8.D 三、9.C10.C11...
2025-10-15 19:01
【摘要】.,....1、已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線上,則( )(A)(B)(C)(D)2、設(shè),則(A) (B) (C) (D)3、若的值等于( ?。〢.2 B.3 C.4
2025-04-07 22:39
【摘要】一、考點(diǎn)解讀2022年高考題2022年高考題2022年高考題《考試大綱》中規(guī)定“辨析并修改病句”,包括六種病句類型:語序不當(dāng)、搭配不當(dāng)、成分殘缺或贅余、結(jié)構(gòu)混亂、表意不明、不合邏輯。分析高考試題,發(fā)現(xiàn)命題方式大致有四種:1、在原句
2025-07-17 22:29
【摘要】全國卷高考圓錐曲線真題參考答案與試題解析 一.解答題(共21小題)1.(2015?新課標(biāo)II)已知橢圓C:9x2+y2=m2(m>0),直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個交點(diǎn)A,B,線段AB的中點(diǎn)為M.(1)證明:直線OM的斜率與l的斜率的乘積為定值;(2)若l過點(diǎn)(,m),延長線段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若
2025-08-05 02:43
【摘要】WORD資料可編輯第五篇高考解析幾何萬能解題套路解析幾何——把代數(shù)的演繹方法引入幾何學(xué),用代數(shù)方法來解決幾何問題。與圓錐曲線有關(guān)的幾種典型題,如圓錐曲線的弦長求法、與圓錐曲線有關(guān)的最值(極值)問題、與圓錐曲線有關(guān)的證明問題以及圓錐曲線與圓錐曲線有關(guān)的證明問題等,
2025-04-17 13:05
【摘要】......高考圓錐曲線知識點(diǎn)匯總知識摘要:1、數(shù)學(xué)探索?.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.2、數(shù)學(xué)探索?.雙曲線的簡單幾何性質(zhì).3、數(shù)學(xué)探索?.拋物線的簡單幾何性質(zhì).一
【摘要】......圓錐曲線一、橢圓:(1)橢圓的定義:平面內(nèi)與兩個定點(diǎn)的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡。其中:兩個定點(diǎn)叫做橢圓的焦點(diǎn),焦點(diǎn)間的距離叫做焦距。注意:表示橢圓;表示線段;沒有軌跡;(2)橢圓的標(biāo)準(zhǔn)方程、
2025-06-19 00:18
【摘要】WORD資料可編輯高三文科數(shù)學(xué)專題復(fù)習(xí)之圓錐曲線知識歸納:名稱橢圓雙曲線圖象定義平面內(nèi)到兩定點(diǎn)的距離的和為常數(shù)(大于)的動點(diǎn)的軌跡叫橢圓即當(dāng)2﹥2時,軌跡
2025-04-17 13:10
【摘要】2016年高考數(shù)學(xué)理試題分類匯編圓錐曲線一、選擇題1、(2016年四川高考)設(shè)O為坐標(biāo)原點(diǎn),P是以F為焦點(diǎn)的拋物線上任意一點(diǎn),M是線段PF上的點(diǎn),且=2,則直線OM的斜率的最大值為(A)(B)(C)(D)1【答案】C2、(2016年天津高考)已知雙曲線(b0),以原點(diǎn)為圓心,雙曲線的實(shí)半軸長為半徑長的圓與雙曲線的兩條漸近線相交于
2025-01-14 14:45
【摘要】2022年高考數(shù)學(xué)試題分類匯編——圓錐曲線一、選擇題1.(2022全國卷Ⅰ理)設(shè)雙曲線221xyab??(a>0,b>0)的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于()(A)3(B)2(C)5(D)6解:設(shè)切點(diǎn)00(,)Px
2025-01-09 15:45
【摘要】高考圓錐曲線壓軸題型總結(jié)直線與圓錐曲線相交,一般采取設(shè)而不求,利用韋達(dá)定理,在這里我將這個問題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡單的思路,簡單的說就是只需考慮未知數(shù)個數(shù)和條件個數(shù),。使用韋達(dá)定理時需注意成立的條件。題型一:條件和結(jié)論可以直接或經(jīng)過轉(zhuǎn)化后可用兩根之和與兩根之積來處理1.
2025-10-01 10:10