【摘要】“解析幾何”一網(wǎng)打盡(一)直線1.(1)點(diǎn)斜式(直線過(guò)點(diǎn),且斜率為).(2)斜截式(b為直線在y軸上的截距).(3)一般式(其中A、B不同時(shí)為0).特別的:(1)已知直線縱截距,常設(shè)其方程為或;已知直線橫截距,常設(shè)其方程為(直線斜率k存在時(shí),為k的倒數(shù)),常設(shè)其方程為或(2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0.直線兩截距相等
2025-06-18 20:19
【摘要】解析幾何中的最值問(wèn)題一、教學(xué)目標(biāo)解析幾何中的最值問(wèn)題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識(shí)作為工具,具有較強(qiáng)的綜合性,這類(lèi)問(wèn)題的解決沒(méi)有固定的模式,其解法一般靈活多樣,且對(duì)于解題者有著相當(dāng)高的能力要求,正基于此,這類(lèi)問(wèn)題近年來(lái)成為了數(shù)學(xué)高考中的難關(guān)。二、教學(xué)重點(diǎn)方法的靈活應(yīng)用。三、教學(xué)程序1、基礎(chǔ)知識(shí)。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2025-09-25 16:15
【摘要】第七章空間解析幾何與向量代數(shù)習(xí)題 (一)選擇題1.已知A(1,0,2),B(1,2,1)是空間兩點(diǎn),向量的模是:()A)B)C)6D)92.設(shè)a={1,-1,3},b={2,-1,2},求c=3a-2b是:()A){-1,1,5}.B){-1,-1,5
2025-09-25 15:52
【摘要】解析幾何題型求參數(shù)的值是高考題中的常見(jiàn)題型之一,其解法為從曲線的性質(zhì)入手,構(gòu)造方程解之.例1.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為()A.B.C.D.考查意圖:本題主要考查拋物線、橢圓的標(biāo)準(zhǔn)方程和拋物線、橢圓的基本幾何性質(zhì).解答過(guò)程:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則
2025-08-05 16:59
【摘要】解析幾何中的定值問(wèn)題1、(2014安徽高考)如圖,已知兩條拋物線,過(guò)點(diǎn)的三條直線、和.與和分別交于兩點(diǎn),與和分別交于,與和分別交于.記的面積分別為與,求證的值為定值.證明:設(shè)直線的方程分別為.把直線與拋物線聯(lián)立求解得:,,.由三角形三頂點(diǎn)坐標(biāo)面積公式得:,,所以=為定值.注:(1)設(shè)?ABC三頂點(diǎn)的坐標(biāo)分別為,則;(2)原解答包含
2025-08-05 16:44
【摘要】一、直線與方程基礎(chǔ):1、直線的傾斜角:αα 2、直線的斜率:;注意:傾斜角為90°的直線的斜率不存在。3、直線方程的五種形式:①點(diǎn)斜式:;②斜截式:;③一般式:;④截距式:;⑤兩點(diǎn)式:注意:各種形式的直線方程所能表示和不能表示的直線。4、兩直線平行與垂直的充要條件:,,;.5、相關(guān)公式:
2025-04-17 12:34
【摘要】高中數(shù)學(xué)講義之解析幾何圓錐曲線第1講橢圓【知識(shí)要點(diǎn)】1、橢圓的定義1.橢圓的第一定義:平面內(nèi)到兩個(gè)定點(diǎn)、的距離之和等于定長(zhǎng)()的點(diǎn)的軌跡叫橢圓,這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩個(gè)焦點(diǎn)之間的距離叫做焦距。注1:在橢圓的定義中,必須強(qiáng)調(diào):到兩個(gè)定點(diǎn)的距離之和(記作)大于這兩個(gè)定點(diǎn)之間的距離(記作),否則點(diǎn)的軌跡就不是一個(gè)橢圓。具體情形如下:(?。┊?dāng)時(shí),點(diǎn)的軌
2025-04-04 05:15
【摘要】圓錐曲線中參數(shù)范圍的求解策略方法一:利用二次方程根的判別式構(gòu)造不等式若題設(shè)中給出直線(或曲線)與曲線有公共點(diǎn)或無(wú)公共點(diǎn)時(shí),可以把直線方程(或曲線方程)與曲線方程聯(lián)立起來(lái),消去某一個(gè)未知數(shù)得到含另一個(gè)未知數(shù)的一元二次方程,就能利用判別式建立起所含參數(shù)的不等式.例1已知雙曲線C的方程為,若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)),求k的取值范圍.【解析】設(shè),
2025-06-24 15:30
【摘要】第一部分主要內(nèi)容第二部分典型例題第一章空間解析幾何第一部分主要內(nèi)容一、向量代數(shù)二、空間解析幾何向量的線性運(yùn)算向量的表示法向量積數(shù)量積向量的積向量概念一、向量代數(shù)如果向量},,{zyxaaaa??kajaiaazyx??????
2025-08-05 04:30
【摘要】模塊六向量代數(shù)與空間解析幾何(一)向量代數(shù)1.理解向量的概念,掌握向量的表示法,會(huì)求向量的模、非零向量的方向余弦和非零向量在軸上的投影。2.掌握向量的線性運(yùn)算(加法運(yùn)算與數(shù)量乘法運(yùn)算),會(huì)求向量的數(shù)量積與向量積。3.會(huì)求兩個(gè)非零向量的夾角,掌握兩個(gè)非零向量平行、垂直的充分必要條件。(二)平面與直線1.會(huì)求平面的點(diǎn)法
2025-01-19 01:01
【摘要】微積分Ⅰ1第七章向量代數(shù)與空間解析幾何§曲面及其方程一、曲面方程的概念二、柱面四、二次曲面三、旋轉(zhuǎn)曲面五、小結(jié)微積分Ⅰ2第七章向量代數(shù)與空間解析幾何水桶的表面、臺(tái)燈的罩子面等.曲面在空間解析幾何中被看成是點(diǎn)的幾何軌跡.1、曲面方程的定義曲面的實(shí)例:
2025-01-19 08:41
【摘要】平面解析幾何的思維特征與研究方法平面解析幾何是中學(xué)數(shù)學(xué)中獨(dú)具特色的一門(mén)學(xué)科.它的基本思想是用代數(shù)方法解決幾何問(wèn)題.解析幾何課復(fù)習(xí)的根本任務(wù)就是深刻領(lǐng)會(huì)“平面解析幾何”的基本思想,把握“平面解析幾何”這門(mén)學(xué)科的思維特點(diǎn)與方法.解析幾何的思維特征幾何特征:幾何對(duì)象的性質(zhì)及相互的位置關(guān)系
2025-05-15 10:47