【正文】
幾何理論的反饋線性化方法是通過局部微分同坯變換,找到非線性反饋,在非線性反饋的作用下,將非線性系統(tǒng)映射為線性系統(tǒng)[45]。計算機(jī)仿真結(jié)果表明,所設(shè)計的控制律可有效地提高發(fā)電機(jī)的穩(wěn)定性和電壓精度。變結(jié)構(gòu)控制的最大優(yōu)點(diǎn)是滑動模態(tài)對內(nèi)部參數(shù)變化和外部擾動作用具有不變性或不靈敏性,響應(yīng)速度快,魯棒性好。3). 在控制器的設(shè)計過程中,設(shè)計者很少考慮控制量的有界約束問題。在這兩部分中,都分別包括模型描述及控制器的設(shè)計步驟,最后給出了控制器及自適應(yīng)參數(shù)替換律的具體形式,并指出得出的結(jié)果可應(yīng)用于電力系統(tǒng)的穩(wěn)定控制。然后對設(shè)計結(jié)果進(jìn)行了討論,指出所得控制器獨(dú)立于網(wǎng)絡(luò)結(jié)構(gòu)及參數(shù),具有很強(qiáng)的魯棒性。設(shè)計過程及仿真結(jié)果表明該類控制器不僅能保證閉環(huán)誤差系統(tǒng)狀態(tài)收斂,而且能夠抑制干擾對系統(tǒng)輸出的影響,同時所得控制器是分散的,且獨(dú)立于網(wǎng)絡(luò)結(jié)構(gòu)及參數(shù)。深入分析了本論文中自適應(yīng)backstepping 方法的特點(diǎn)。backstepping方法作為一種非線性控制的設(shè)計工具[83],由Kokotovic等人于1991年首次提出后,由于其設(shè)計過程簡明且能有效處理系統(tǒng)參數(shù)不確定性,近來引起許多理論工作者的極大關(guān)注[84,85]。backstepping方法的設(shè)計思想是視每一子系統(tǒng)中的為虛擬控制,通過適當(dāng)?shù)奶摂M反饋使得前面的系統(tǒng)狀態(tài)達(dá)到漸近穩(wěn)定,但系統(tǒng)的解一般不滿足,為此引進(jìn)誤差變量,期望通過控制的作用,使得與虛擬反饋間具有某種漸近特性,從而實現(xiàn)整個系統(tǒng)的漸近穩(wěn)定。backstepping方法有兩個主要優(yōu)點(diǎn):1)通過反向設(shè)計使控制V函數(shù)和控制器的設(shè)計過程系統(tǒng)化、結(jié)構(gòu)化;2)可以控制相對階為的非線性系統(tǒng),消除了經(jīng)典無源性設(shè)計中相對階為1的限制。(LasalleYoshizawa) 設(shè)是系統(tǒng) ()的一個平衡點(diǎn)且在及內(nèi)是局部Lipschitz的;設(shè)是一個連續(xù)可微、正定且徑向無界的函數(shù)使得 (),是一個連續(xù)函數(shù)。則第三步:增廣()式形成下面的存貯函數(shù) ()其中為估計誤差;為自適應(yīng)增益矩陣, ;。仿真參數(shù)為:。從仿真過程還可以注意到的值越小,系統(tǒng)的參數(shù)自適應(yīng)及干擾抑制效果越好,但太小的值將增大控制器增益,從而限制了控制器的實用。 ()證明:合理選取使,則有令,則 ()又,將()式兩側(cè)分別積分得耗散不等式()。 非線性自適應(yīng)魯棒控制器的設(shè)計對于含有不確定參數(shù)及外部干擾的系統(tǒng)(),下面應(yīng)用自適應(yīng)backstepping方法進(jìn)行非線性魯棒控制器的設(shè)計。分析方面研究的是:當(dāng)系統(tǒng)存在不確定及外部干擾時,系統(tǒng)的穩(wěn)定性和動態(tài)性能的分析;綜合方面研究的是:當(dāng)系統(tǒng)存在不確定及外部干擾時,如何設(shè)計有效的控制律使閉環(huán)系統(tǒng)具有更強(qiáng)的魯棒性。第一步:考慮(),將看作虛擬控制,設(shè)計鎮(zhèn)定函數(shù),形成Lyapunov函數(shù)。 自適應(yīng)backstepping方法backstepping(也稱逆推、后推、反步)方法通常與Lyapunov型自適應(yīng)律結(jié)合使用,即綜合考慮控制律和自適應(yīng)律,使整個閉環(huán)系統(tǒng)滿足期望的動靜態(tài)性能,它主要適用于可狀態(tài)線性化或下三角結(jié)構(gòu)(也稱參數(shù)嚴(yán)格反饋結(jié)構(gòu))[86]的不確定非線性系統(tǒng)。第二章 一類非線性系統(tǒng)的自適應(yīng)魯棒backstepping設(shè)計 引言對于電力系統(tǒng)等一類強(qiáng)非線性、多維、動態(tài)大系統(tǒng),其在運(yùn)行中不可避免地受到干擾的影響;同時由于所建模型的不準(zhǔn)確性,設(shè)計所用控制對象參數(shù)的誤差或控制器量測部件的誤差等也都將對系統(tǒng)形成廣義的干擾[41]。第七章將第二章的結(jié)果應(yīng)用到電力系統(tǒng)FACTS控制。其次,作為綜合協(xié)調(diào)控制的例子,研究了勵磁與汽門的綜合控制的非線性魯棒控制問題。針對帶勵磁控制的單機(jī)無窮大母線系統(tǒng),分別在阻尼系數(shù)不能精確測量、以及系統(tǒng)兼有阻尼系數(shù)不能精確測量和受外部擾動影響的情況下,首次使用自適應(yīng)backstepping 方法設(shè)計了非線性自適應(yīng)魯棒控制器及非線性L2增益干擾抑制控制器?;诖耍疚膶⑾冗M(jìn)的控制方法─backstepping方法引入電力系統(tǒng),并就其如何進(jìn)行電力系統(tǒng)的魯棒控制器的設(shè)計問題進(jìn)行討論。其原理是利用切換控制將系統(tǒng)的運(yùn)動軌跡引導(dǎo)到一個由設(shè)計者所選擇的切換面上,其上的運(yùn)動是漸進(jìn)穩(wěn)定的。若與魯棒控制(包括H∞控制)、變結(jié)構(gòu)控制、自適應(yīng)控制相結(jié)合,則可以解決參數(shù)魯棒問題。文[50,51]選擇轉(zhuǎn)子相對角為控制目標(biāo),使用微分幾何方法將系統(tǒng)模型進(jìn)行了輸入對狀態(tài)的精確線性化,設(shè)計了發(fā)電機(jī)非線性勵磁控制器;文[52]選擇發(fā)電機(jī)端電壓為控制目標(biāo),使用微分幾何方法設(shè)計了發(fā)電機(jī)非線性勵磁控制器。大量的實際應(yīng)用已證明了無模型控制器的良好品質(zhì)。基于自適應(yīng)、人工神經(jīng)網(wǎng)絡(luò)(ANN)、模糊控制(FC)和專家系統(tǒng)的智能控制由于具有處理各種非線性 (包括強(qiáng)非線性)的能力、并行計算的能力、自適應(yīng)、自學(xué)習(xí)、自組織的能力以及容許模型不精確甚至不確定等多方面優(yōu)點(diǎn),使之可以綜合解決多機(jī)電力系統(tǒng)控制所面臨的諸多問題。非線性H∞控制是80年代提出的一種魯棒控制理論。Lyapunov直接法(第二法)由于直接考慮了系統(tǒng)的非線性特性,且物理概念清晰,在電力系統(tǒng)暫態(tài)穩(wěn)定的分析及控制器的設(shè)計中得到了廣泛的應(yīng)用。文[30]討論了應(yīng)用LQG方法設(shè)計魯棒TCSC控制器的過程;文[31]對一個互聯(lián)電力系統(tǒng)使用部分輸出反饋提出了修改的最優(yōu)控制器,該方法避免了權(quán)重矩陣選擇的困難,可將機(jī)電和勵磁方式轉(zhuǎn)移到一個預(yù)先指定的垂直帶。而嚴(yán)重故障后的緊急控制措施可將由于安全性破壞而對系統(tǒng)造成的影響減小到最低程度。因此,如何減小各控制器之間的相互影響,解決各控制器之間的協(xié)調(diào)問題,以提高系統(tǒng)的穩(wěn)定性將會受到更多的關(guān)注。它們可以在不切機(jī)的情況下,從根本上提高機(jī)組與電網(wǎng)的穩(wěn)定運(yùn)行水平。用于電氣制動的TCBR一般被安裝在發(fā)電機(jī)端用以吸收當(dāng)系統(tǒng)發(fā)生故障時的過剩暫態(tài)能量,保持電力系統(tǒng)運(yùn)行的穩(wěn)定性。此外,當(dāng)系統(tǒng)遭受干擾或發(fā)生故障時,通過調(diào)節(jié)輸出無功功率,SVC可以起到穩(wěn)定系統(tǒng)的作用。而對其控制規(guī)律進(jìn)行設(shè)計研究則是理論工作者關(guān)注的熱點(diǎn)之一。由于機(jī)組群與它們的自然機(jī)電振蕩頻率的不同,使得系統(tǒng)在某種狀況下發(fā)生低頻振蕩,其振蕩頻率約為每分鐘1至5次。盡管目前在FACTS的定義和范疇方面看法不一,但在電力系統(tǒng)中廣泛采用電力電子技術(shù)的趨勢則是不爭的事實。[10],系統(tǒng)間輸送的有功功率由圖中的方程所確定。早期的水輪機(jī)水門調(diào)節(jié)方式是根據(jù)機(jī)組轉(zhuǎn)速的偏差進(jìn)行比例調(diào)節(jié)。根據(jù)多年的電廠接入系統(tǒng)設(shè)計結(jié)果,一般情況下,除電廠出線始端發(fā)生三相短路必須采取切機(jī)減出力措施外,其它的單一故障,通過采取快關(guān)汽門措施,可達(dá)到電力系統(tǒng)穩(wěn)定運(yùn)行目的。雖然模型階數(shù)越高,對發(fā)電機(jī)動態(tài)行為的模擬就越詳細(xì),但同時復(fù)雜程度也相應(yīng)增加。 發(fā)電單元的主要控制部件[8],水輪機(jī)或汽輪機(jī)將水力或蒸汽力轉(zhuǎn)換為機(jī)械力,調(diào)速器控制原動機(jī)的水力或蒸汽力,發(fā)電機(jī)進(jìn)行機(jī)電能量的轉(zhuǎn)換,而勵磁機(jī)和電壓調(diào)節(jié)器控制電力的輸出,同時調(diào)速器及勵磁系統(tǒng)又都可以控制電力系統(tǒng)穩(wěn)定,所以將調(diào)速器稱為水門或汽門開度控制器則更為合適。 在控制理論的應(yīng)用方面,控制理論越來越緊密的與其他相關(guān)學(xué)科和新興產(chǎn)業(yè)相交叉、滲透、融合與應(yīng)用。這使控制理論面臨著新的挑戰(zhàn),決定了它目前處于新一輪大發(fā)展的前夕。從50年代末到60年代起,由于航天、航空、航海的發(fā)展,要求有更快、更精、更可靠的控制方法,這就導(dǎo)致控制理論的新一輪發(fā)展高潮,出現(xiàn)了基于狀態(tài)空間描述的控制理論。文獻(xiàn) [6]的大量應(yīng)用實例及工程實際研究進(jìn)一步表明應(yīng)用控制理論于電力系統(tǒng)的安全穩(wěn)定控制的巨大效益以及現(xiàn)實可用性和廣闊前景。我國電力系統(tǒng)中安全穩(wěn)定控制技術(shù)的開發(fā)應(yīng)用較早,50年代起即普遍應(yīng)用的低頻減載和后來應(yīng)用于某些電網(wǎng)的穩(wěn)定控制,曾對保證電網(wǎng)的安全穩(wěn)定運(yùn)行起了重要作用。長期以來,國內(nèi)外的專家、學(xué)者對如何保證和提高電力系統(tǒng)的穩(wěn)定性進(jìn)行了大量的研究工作,并且至今仍將其作為電力系統(tǒng)方面的一個重要研究課題。穩(wěn)定實際是一個動態(tài)過程,主要是指電力系統(tǒng)受到的大/小干擾引起同步電機(jī)電壓相角的再調(diào)整,進(jìn)而造成系統(tǒng)發(fā)電和負(fù)荷之間的不平衡,從而建立起一個新運(yùn)行狀態(tài)的過程?;趲в蠺CSC、STATCOM的單機(jī)無窮大母線系統(tǒng)的三階模型以及針對交直流并聯(lián)輸電系統(tǒng),在系統(tǒng)兼有阻尼系數(shù)不能精確測量和受外部擾動影響的情況下,首次使用自適應(yīng)backstepping 方法設(shè)計了TCSC、STATCOM及直流調(diào)節(jié)系統(tǒng)的非線性自適應(yīng)魯棒控制器。其次,作為綜合協(xié)調(diào)控制的例子,研究了勵磁汽門綜合控制的非線性魯棒控制問題。最后指出得出的結(jié)果可應(yīng)用于電力系統(tǒng)的穩(wěn)定控制。所考慮的電力系統(tǒng)模型均為更貼近實際的非線性魯棒模型。電力系統(tǒng)一旦失去穩(wěn)定,其暫態(tài)過程極快,處理不當(dāng)可能很快波及全系統(tǒng),往往造成大范圍、較長時間停電,給國民經(jīng)濟(jì)和人民生活造成巨大損失和嚴(yán)重危害,在最嚴(yán)重的情況下,則可能使電力系統(tǒng)崩潰和瓦解。它們在提高電力系統(tǒng)性能的同時,也為解決上述問題提供了各種各樣的途徑。這種設(shè)計方法在以前的文獻(xiàn)中很少見到。然后對設(shè)計結(jié)果進(jìn)行了分析,討論了控制器的實現(xiàn)問題。(5)研究了多機(jī)系統(tǒng)勵磁及汽門的非線性魯棒控制問題。In this dissertation, aiming at the nonlinear model of power systems, by means of the backstepping methods, a series of stability control problems are studied, including excitation control, steamvalve control, and main FACTS devices control, etc. The research work in this dissertation is a more attempt which advanced control methods are applied into power systems stability control. The outstanding characteristics of it are as follows:1. The backstepping design methods are developed. On the parameter uncertainties, unmodelling dynamics and unknown disturbances which exist in practical systems generally,integrating nonlinear L2 gain disturbances attenuation theory smoothly into backstepping design steps,then the nonlinear adaptive robust controller which can stabilize the system has been designed. The concise design method and excellent design strategy make the designed corresponding control scheme own extensive adaptability. 2. The above results have been extended to the stability control of power systems successfully, such as excitation, steam valve of single machine and multimachine systems, main FACTS devices, etc. The considered system models are all nonlinear robust models corresponding to reality, in which the system model of through control for steamvalve open and the integrated control for excitation and steamvalve are fourorder and have two inputs, and the selfdynamic behavior in system models of main FACTS are not ignored. The design methods are rarely founded in the existing references. They make the designed results to be more practical and deep theoretical analysis and simulation show validity and high performance of the controller. The main work is as follows:(1) Adaptive robust control problems for a class of nonlinear systems in strict parameter feedback are studied. In view of the system with constant parameter uncertainty and external disturbances, integrating nonlinear L2 gain disturbances attenuation theory smoothly into backstepping design steps, then nonlinear L2 gain disturbances attenuation controller