freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

簡(jiǎn)單鏈型懸掛at方式接觸網(wǎng)設(shè)計(jì)——畢業(yè)設(shè)計(jì)(完整版)

2025-08-02 05:21上一頁面

下一頁面
  

【正文】 目前,在接觸網(wǎng)工程中,特別是較大站場(chǎng)上,大量利用鋼拄,它是由角鋼焊接成的立體桁架結(jié)構(gòu)支柱,具有重量輕、耐碰撞、運(yùn)輸及安裝方便。圖32 支柱基礎(chǔ)結(jié)構(gòu)示意圖全補(bǔ)償鏈形懸掛要比半補(bǔ)償鏈形懸掛結(jié)構(gòu)高度低,所以全補(bǔ)償采用的支柱也比半補(bǔ)償鏈形懸掛采用的支柱低()。詳見表310。但是隨著鐵路的發(fā)展,采用大型養(yǎng)路機(jī)械進(jìn)行線路修理是鐵路現(xiàn)代化的重要標(biāo)志,接觸網(wǎng)的側(cè)面限界就要考慮這個(gè)因素。200mm;γ=20mm;則受風(fēng)偏移為:則<500mm,所以,所選最大跨距滿足條件。接觸懸掛重量:腕臂、絕緣子等重量:懸掛中心與支柱中心間的距離: 承力索受風(fēng)力:接觸線受風(fēng)力:接觸線“之”字力:承力索“之”字力:查表38得支柱受風(fēng)力面:F= 風(fēng)負(fù)載體型系數(shù): 支柱受風(fēng)力負(fù)載:接觸線距基礎(chǔ)面高度: 承力索距基礎(chǔ)面高度: 支柱一半高度: ②計(jì)算過程 在實(shí)際應(yīng)用中需要考慮一定的預(yù)量:。在本文的計(jì)算推導(dǎo)中,我們作了以下的假設(shè)條件: 圖41 簡(jiǎn)單鏈型懸掛的基本圖承力索及接觸線為理想的柔軟索,只能承受沿其軸線方向的拉力,忽略其剛度的影響(接觸線及承力索細(xì)長(zhǎng)比很大,可忽略其剛度);承力索及接觸線自身質(zhì)量沿X 方向均勻分布,在受力分析時(shí)考慮其數(shù)值,但不再畫出其分布圖;每根吊弦的質(zhì)量由兩部分組成: 固定質(zhì)量(吊弦的上下線夾、緊固螺栓、基本接頭質(zhì)量總和)及長(zhǎng)度質(zhì)量(隨吊弦長(zhǎng)度變化而改變的質(zhì)量,若每根吊弦質(zhì)量為確定數(shù)值,則長(zhǎng)度質(zhì)量為零);不考慮預(yù)留弛度(基本不使用預(yù)留弛度)。接觸網(wǎng)錨段長(zhǎng)度應(yīng)根據(jù)補(bǔ)償?shù)慕佑|線和承力索的張力差、補(bǔ)償器形式以及補(bǔ)償導(dǎo)線的高度等綜合因素確定。(4)單線電氣化區(qū)段,宜在車站的一端(以電源側(cè)為最好)設(shè)絕緣錨段關(guān)節(jié);并應(yīng)裝設(shè)隔離開關(guān)。 錨段關(guān)節(jié)錨段關(guān)節(jié)分為三種:僅起機(jī)械分段作用的稱為非絕緣錨段關(guān)節(jié),該處相鄰的兩個(gè)錨段在電氣上是連通的;不僅起機(jī)械分段作用,同時(shí)又起同相電分段作用的錨段關(guān)節(jié),稱為絕緣錨段關(guān)節(jié);帶有中性嵌入段,既起機(jī)械分段的作用,又具有電分相功能的,稱為電分相錨段關(guān)節(jié)。在高速接觸網(wǎng)中,一般以四跨非絕緣錨段關(guān)節(jié)和五跨絕緣錨段關(guān)節(jié)為主。七跨電分相錨段關(guān)節(jié)的結(jié)構(gòu)如圖52所示。補(bǔ)償器由補(bǔ)償滑輪、補(bǔ)償繩、杵環(huán)桿、墜砣桿、墜砣塊及連接零件組成。全補(bǔ)償鏈形懸掛承力索弛度,在跨距一定時(shí),由懸掛的負(fù)載和承力索張力決定。所以由式62和63可得:(1)接觸線的a、b值:①當(dāng)錨段長(zhǎng)度為1385 m時(shí):②同理當(dāng)錨段長(zhǎng)度分別為為1225m,1165m和1325m時(shí): 。支柱可以改選為鋼柱,雖然建造成本會(huì)提高,維修工作量大,但是有強(qiáng)度高、安裝運(yùn)輸方便等優(yōu)點(diǎn)。 Montesinos and Carmona, 2007).In spite of the advantages of using overhead lines, their deployment along the railway tracks is a very plex design process. This plexity can be analysed from four different perspectives.First of all, many elements have to be considered so as to electrify a track stretch of several kilometres in length. The overhead contact line, hereinafter also called catenary, is assembled considering a range of spans of about 60 m in length, normally between 15 and 20 (Montesinos and Carmona, 2007). If each of them is supported by a pair of poles, more than 30 poles per km in twoway standard tracks are needed. At railway stations, the number of tracks is increased and the space is limited, so poles are replaced with portal frames, thus allowing simultaneous support for multiple closelocated catenaries through a single structure. As an example, Fig. 1 illustrates the high number of portal frames in a railway station.Secondly, the deployment process involves several plex and critical tasks:1. Placing structures along the track stretches. This may include a ground projection of the elements and an analysis of geographical, climatic, and terrain conditions.2. Designing support elements, like poles and portal frames, in order to withstand the main catenary infrastructure ponents (wires and cantilevers). Moreover, these supporting elements must deal with extreme conditions, like strong winds and ice overload.Thirdly, there are many experts that take part in the design process (De Bruijn and Veeneman, 2009). Every previously mentioned task requires knowledge from different ?elds, such as topography, architecture, structural calculus and drawing. Moreover, technical security and legal normative have to be considered throughout the process. Therefore, every task is assigned to a different expert of each ?eld. From this point of view, the plexity of the design process lies in the variety of knowledge sources, and it bees worse due to the dif?culty and slowness of munication among all the experts.Fourthly, as the experts taking part in the process belong to different panies, the railway pany must deal with several outsourced enterprises within a rail work project. This fact results in a hard munication among them, because every pany has its own organization, interoperability protocols, and interfaces (Panetto and Molina, 2008). Moreover, when concerning a cross country project, several railway panies get involved in it, so patibility issues must be take into account (Midya and Thottappillil, 2008).The paper is organized as follows. Section 2 describes the stages involved in the design process of deploying overhead lines within a project. In Section 3, the algorithm to design and calculate a single catenary support structure is 4 presents the high productivity software tool developed to perform the whole design process ef?ciently. Section 5 analyzes the tool performance of resolving multiple catenary support structures. Section 6 includes some results, validations, and discussions about the tool. And, ?nally, Section 7 shows the main conclusions of the paper.2. The process of designing and calculating the railway catenary infrastructureThe design and calculation of the railway catenary infrastructure is a very plex process, as it is described in Kiessling et al. (2009). It involves several stages that need to be acplished in order to obtain a valid solution. Every stage of the process requires speci?c knowledge from different ?elds, so that different experts have to take part in it. These experts usually belong to different outsourced panies, that must deal with the railway pany so as to agree on the requirements, costs, quality, security and technical aspects, and legal issues.In this section, we present the stages of this design process with further detail, based on three sources: railway pany experts, the design planning process described in Kiessling et al. (2009), and previous works (Carretero et al., 2003。CarlosGomez,通過對(duì)接觸網(wǎng)基本結(jié)構(gòu)的了解,依據(jù)接觸網(wǎng)設(shè)計(jì)的一般技術(shù)原則,按照區(qū)間接觸網(wǎng)設(shè)計(jì)的步驟,結(jié)合國(guó)內(nèi)外接觸網(wǎng)運(yùn)行的新技術(shù)和新設(shè)備,設(shè)計(jì)出適合高速列車運(yùn)行的接觸網(wǎng)。鏈形懸掛的自重力負(fù)載: 本設(shè)計(jì)中錨段內(nèi)跨距的標(biāo)準(zhǔn)取值有=50m,55m?;喴话愣佳b有軸承。該中性嵌入線從左側(cè)的3處變?yōu)楣ぷ髦?,到右?cè)6處開始拾升,變?yōu)榉枪ぷ髦?,有三個(gè)跨距長(zhǎng)度處于工作狀態(tài),可保證約有100150 m長(zhǎng)度的中性區(qū)。五跨絕緣錨段關(guān)節(jié)的技術(shù)條件為:在錨段關(guān)節(jié)內(nèi),兩組懸掛間的有效絕緣距離須大于450mm,在靠近下錨側(cè)的兩轉(zhuǎn)換柱內(nèi),兩懸掛在水平面內(nèi)投影平行,且距離應(yīng)保持450mm,在靠近下錨側(cè)的轉(zhuǎn)換柱處,兩組懸掛的垂直距離應(yīng)在550mm以上,在中心跨的兩轉(zhuǎn)換柱處,兩組懸掛的垂直距離應(yīng)保持150mm;兩工作支的等高點(diǎn)應(yīng)位于中心跨中間,等高處的接觸線高度應(yīng)高出標(biāo)準(zhǔn)導(dǎo)高40mm。根據(jù)所含跨距數(shù)可分為二跨、三跨、四跨、五跨、七跨及九跨式錨段關(guān)節(jié)。并裝設(shè)負(fù)荷開關(guān)或消弧電動(dòng)隔離開關(guān),納入遠(yuǎn)動(dòng)控制為宜。10%,并應(yīng)符合下列要求:(1)正線雙邊補(bǔ)償時(shí)的最大錨段長(zhǎng)度,一般情況不宜大于2800m。根據(jù)《高速鐵路設(shè)計(jì)規(guī)范(試行)》(5):,速度在250km/h區(qū)段,最短吊弦長(zhǎng)度不小于500mm。(2) 轉(zhuǎn)換柱校驗(yàn)轉(zhuǎn)換柱選用,以9號(hào)支柱為例,左右跨距為55m。由于在此區(qū)間中直線區(qū)段相對(duì)比較長(zhǎng),且在每一個(gè)錨段中直線長(zhǎng)度都超過50%,所以根據(jù)下式驗(yàn)證所確定的錨段(選取1385m的錨段)。 支柱類型在支柱類型欄內(nèi)要標(biāo)明每一個(gè)支柱的材質(zhì)、型號(hào)、容量、高度及數(shù)量。設(shè)置拉出值的目的是使受電弓滑板磨損均勻在直線區(qū)段,接觸線應(yīng)按之字形布置,支柱處的拉出值宜采用200~300mm。 設(shè)計(jì)參
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1