【正文】
BA2,空間群為P6m/mm;無(wú)序排列的六方結(jié)構(gòu)的MSUn,空間群為P6m。前者如普通的SiO2氣凝膠、微晶玻璃等,孔徑范圍較大,孔道形狀不規(guī)則;后者是以表面活性劑形成的超分子結(jié)構(gòu)為模板,利用溶膠 凝膠工藝,~30nm,孔徑分布窄且有規(guī)則孔道結(jié)構(gòu)的無(wú)機(jī)多孔材料,如M41S等。這兩類(lèi)分子篩屬非晶態(tài),且模板劑很容易通過(guò)溶劑萃取除去[15]。酸性介質(zhì)中,自身組配的主要驅(qū)動(dòng)力是靜電作用,即假設(shè)在陽(yáng)離子SiO2物種與陽(yáng)離子表面活性劑的極性頭之間的相互作用是借助于兩者之間的鹵離子起作用,并將這一思路擴(kuò)展到其他介孔材料的合成中,制備出一系列介孔過(guò)渡金屬氧化物材料,如PbO、WO3等[21]。而在同樣反應(yīng)中,用Tiβ沸石的轉(zhuǎn)化率為30%,TS1則無(wú)活性。SBA2產(chǎn)物中的模板劑可通過(guò)焙燒除去,它的熱穩(wěn)定性高達(dá)800℃。趙杉林等[30]以溴代十六烷吡啶為模板劑,硅溶膠為硅源,用微波輻射法合成出髙結(jié)晶度的介孔雜原子VMCM41分子篩。早期多孔炭系是由含碳的天然植物或礦物為原料,如果殼、果核、木材、各種牌號(hào)的煤炭和重質(zhì)石油瀝青等。 介孔材料的制備方法有序介孔材料是一類(lèi)新型的納米材料,其特點(diǎn)是孔徑分布范圍窄并排列有序,具有高比表面積、孔容積大以及較高的熱穩(wěn)定性和水熱穩(wěn)定性,在作為精細(xì)化學(xué)品催化劑和生物大分子吸附分離等方面以及光、電、磁等功能材料領(lǐng)域具有廣泛的應(yīng)用。介孔分子篩的特點(diǎn)可歸納為:以表面活性劑分子聚集體為模板,通過(guò)表面活性劑分子聚集體和無(wú)機(jī)物種之間的界面組裝過(guò)程實(shí)現(xiàn)對(duì)介觀圖式結(jié)構(gòu)的剪裁。另外,模板技術(shù)源于生物礦化過(guò)程,隨著人們對(duì)組裝過(guò)程認(rèn)識(shí)的不斷深入,人們必然加深對(duì)生物礦化過(guò)程乃至生命過(guò)程的理解,最終指導(dǎo)有意識(shí)的合成人們所需要的仿生材料。液相浸漬法存在一突出的缺點(diǎn)即工藝復(fù)雜,它通過(guò)液態(tài)分子擴(kuò)散來(lái)實(shí)現(xiàn)孔內(nèi)填充,為達(dá)到孔內(nèi)分子的緊密堆積,須反復(fù)進(jìn)行浸漬—干燥處理,顯然需要的時(shí)間長(zhǎng),而且很難保證填充效率及重復(fù)性。參考文獻(xiàn)[1] 徐如人,:科學(xué)出版社,2004[2] 李惠云,何其戈,1999,(2):27229[3] 曾垂省,陳曉明,2004,12(5):4852[4] Kresge C T, Leonowicz M E. Facile Preparation of Hierarchically Porous Carbon Monoliths with WellOrdered Mesostructures. Nature, 1992, 359: 710712[5] Stucky G D, Monnier A, Schueth F, et al. SurfactantTemplated Mesoporous Materials: From Inorganic to Hybrid to Organic. Mol. Cryst. Liq. Cryst., 1994, 240: 187193[6] Huo Q, Leon R, Petroff P, et al. Synthesis of Highly Ordered, Extremely Hydrothermal stable SBA15/AlSBA15 under the Assistance of Sodium Chloride. Science, 1995, 268: 13241325[7] Huo Q, Stucky G D. Mesoporous Materials (M41S): From Discovery to Application. Chem. Mater., 1996, 8: 11471152[8] Tanev P T, Pinnavaia T J. TemperatureProgrammed MicrowaveAssisted Synthesis of SBA15 Ordered Mesoporous Silica. Nature, 1994, 368: 321323[9] Huo Q S, Margolese D I. Ultraslow Temperature Synthesis of Ordered Hexagonal Smaller Supermicroporous Silica Using Semifluorinated Surfactants as Template. Nature, 1994, 378: 317321[10] Tanev P T, Pinnavaia T J. Recent Progress in the Synthesis of Porous Carbon Material. Science, 1995, 267: 865867[11] Bagshaw S A, Prouzet E, Pinnavaia T J. Energetically Favored Formation of MCM48 from CationicNeutral Surfactant Mixtures. Science, 1995, 269 (5228): 12421244[12] Kim S S, Zhang W, Pinnavaia T J. Hydrothermal stability of MCM48 Improved by postsynthesis restructuring in salt solution. Science, 1998, 282: 10321035[13] Zhang W Z, Glomski B, Pauly T R, Pinnavaia T J. Investigation of the Morphology of the Mesoporous SBA15 and SBA16 Materials. Chem. Commun., 1999: 18031805[14] Kim S, Liu Y, Pinnavaia T J. Micropor. Facile synthesis of high quality mesoporous SBA15 with enhanced control of the porous network connectivity and wall thickness Mesopor. Mater, 2001, 4445: 489498[15] Mercier L, Pinnavaia T J. Fabrication of wellordered macroporous active carbon with a microporous framework. Chem. Mater. 2000, 12 (1): 188190[16] Zhao D, Feng J, Huo Q. Nonionic Triblock and Star Diblock Copolymer and Oligom