【摘要】A易佳教育哪里不會補哪里正弦定理練習題1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4
2025-03-25 04:58
【摘要】勾股定理??剂曨}勾股定理的直接應用:1、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()A:26B:18C:20D:212、在平面直角坐標系中,已知點P的坐標是(3,4),則OP的長為()A:3B:4
2025-03-24 13:00
【摘要】一、選擇題1、在Rt△ABC中,∠C=90°,三邊長分別為a、b、c,則下列結(jié)論中恒成立的是() A、2abc2 D、2ab≤c22、已知x、y為正數(shù),且│x2-4│+(y2-3)2=0,如果以x、y的長為直角邊作一個直角三角形,那么以這個直角三角形的斜邊為邊長的正方形的面積為() A、5 B、25
2025-06-23 05:28
【摘要】勾股定理典型分類練習題題型一:直接考查勾股定理,.⑴已知,.求的長2已知,,求的長變式1:已知,△ABC中,AB=17cm,BC=16cm,BC邊上的中線AD=15cm,試說明△ABC是等腰三角形。變式2:已知△ABC的三邊a、b、c,且a+b=17,ab=60,c=13,△ABC是否是直角三角形?
2025-03-24 12:59
【摘要】正弦定理練習題1.在△ABC中,A=45°,B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4B.4C.4D.3.在△ABC中,a,
2025-03-25 04:59
【摘要】圓切線、兩圓位置關(guān)系練習題一、填空題1、⊙O是ΔABC的外接圓,∠BOC=120°,∠BAC=2、⊙O半徑為5,點O(0,0),則點P(4,2)在⊙O(填外、內(nèi))3、ΔABC中,AB=6,BC=8,AC=12,⊙O與ΔABC三邊AB,BC,
2024-11-23 13:50
【摘要】切線長定理學習目標:1..通過操作經(jīng)歷切線長定理的探索過程。2.會用切線長定理進行簡單的推理論證和有關(guān)計算。即看見從圓外一點引了圓的兩條切線能得到有關(guān)的直接結(jié)論與間接結(jié)論。3.能掌握本節(jié)課的常見重點圖形。5明白探索結(jié)論型的題目的思路是觀察,猜想,證明。6明白幾何題目可以用代數(shù)法(方程思想)解決。學習過程:
2024-12-09 02:37
【摘要】正弦定理和余弦定理練習題(新課標)1、選擇題1.在△ABC中,角A、B、C的對邊分別是a、b、c,A=,a=,b=1,則c等于()A.1B.2C.D.
【摘要】《勾股定理》典型例題分析一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長分別是a,b,c,且滿足a2+b2=c2,那么三角形ABC是直角三角形。這個定
【摘要】《勾股定理》典型例題分析二、考點剖析考點一:利用勾股定理求面積1、求陰影部分面積:(1)陰影部分是正方形;(2)陰影部分是長方形;(3)陰影部分是半圓.2.如圖,以Rt△ABC的三邊為直徑分別向外作三個半圓,試探索三個半圓的面積之
【摘要】勾股定理同步練習題1.已知直角三角形中30°角所對的直角邊長是cm,則另一條直角邊的長是()A.4cmB.cmC.6cmD.cm2.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( )A.42B.32C.42或32
2025-06-23 07:39
【摘要】勾股定理練習題一、基礎(chǔ)達標:1.下列說法正確的是( )a、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( ?。〢.B. C
2025-06-22 07:28