【摘要】(1)雙曲線的第一定義:平面內(nèi)與兩個定點F1、F2的距離差的絕對值是常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲(2)雙曲線的第二定義:平面內(nèi)到一個定點F的距離和到一條定直線l的距離比是常數(shù)e(e>1)的點的軌跡叫做2.雙曲線標準方程的兩種形式x2/a2-y2/b2=1,-x2/b2+y2/a2=1(a、b>0)分別
2024-11-10 12:26
【摘要】第八章平面解析幾何第6課時雙曲線欄目導(dǎo)引第八章平面解析幾何名師講壇精彩呈現(xiàn)考點探究講練互動教材回顧夯實雙基知能演練輕松闖關(guān)1.雙曲線的定義雙曲線如何定義?提示:在平面內(nèi)到兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|且大于零)的點的軌跡(或
2025-08-05 18:36
【摘要】精品資源雙曲線及其標準方程 一、教學(xué)目標(一)知識教學(xué)點使學(xué)生掌握雙曲線的定義和標準方程,以及標準方程的推導(dǎo).(二)能力訓(xùn)練點在與橢圓的類比中獲得雙曲線的知識,從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標準方程一個比較深刻的認識.二、教材分析1.重點:雙曲線的
2025-07-14 15:53
【摘要】F2F1M定義曲線方程焦點關(guān)系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(±c,0)
2024-11-06 14:33
【摘要】雙曲線的定義及標準方程[復(fù)習(xí)]1、求曲線方程的步驟一、建立坐標系,設(shè)動點的坐標;二、找出動點滿足的幾何條件;三、將幾何條件化為代數(shù)條件;四、化簡,得所求方程。2、橢圓的定義到平面上兩定點F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點的軌跡3、橢圓的標準方程有幾類?[兩類][思考]到平面上兩定點
【摘要】2例題講評[例1]已知定點F1(-3,0),F(xiàn)2(3,0),坐標平面上滿足下列條件之一的動點P的軌跡:12(1)8PFPF???12(6)5PFPF???12(2)6PFPF??12(4)4PFPF??12(5
2025-08-05 01:15
【摘要】1第八章圓錐曲線方程第講(第一課時)2考點搜索●雙曲線的第一、第二定義,焦點在x軸、y軸上的標準方程●雙曲線的范圍、對稱性、頂點、焦點、離心率、準線、漸近線、焦半徑等基本性質(zhì)高考猜想1.求雙曲線的標準方程,以及基本量的求解.2.以直線與雙曲線為背景,求
2025-08-20 08:57
【摘要】直線與橢圓:(2)弦長問題||1||2akAB????(3)弦中點問題(4)經(jīng)過焦點的弦的問題(1)直線與橢圓位置關(guān)系韋達定理或設(shè)點作差法0___??||)1(1||//2akAB????OABSkkkxyyx??????,求)若(的范圍;點,求)若直
2024-10-04 18:53
【摘要】雙曲線的定義及標準方程yxF1F2OA2B2A1B1yxA1F1F2OA2)1,0(??ace橢圓雙曲線方程圖形范圍
2024-11-06 19:22
【摘要】練習(xí):求下列直線與雙曲線的交點坐標.直線與雙曲線位置關(guān)系及交點個數(shù)XYOXYO相交:兩個交點相切:一個交點相離:0個交點相交:一個交點例1:如果直線y=kx-1與雙曲線x2-y2=4僅有一個公共點,求k的取值范圍.分析:只有一個公共點,即方程組僅有一組實數(shù)解.
2024-11-10 21:43
【摘要】評講作業(yè)及《勸學(xué)》的雙曲線方程。弦長為所截得的,且直線:求漸進線方程為33803021?????yxyx)0(422?????yx解:設(shè)所求雙曲線為????????2243yxxy聯(lián)立0362432??????xx3383)36(12241122???????d4???14:2
2024-11-06 23:49
【摘要】雙曲線基礎(chǔ)練習(xí)題一、選擇題1.已知a=3,c=5,并且焦點在x軸上,則雙曲線的標準程是()A.B.C.2.已知并且焦點在y軸上,則雙曲線的標準方程是()A.B.C.D.3..雙曲線上P點到左焦點的距離是6,則P到右焦點的距離是()A.12B.14C.16D.
2025-03-26 05:43