【正文】
Supported by colleges and universities natural science research project of AnhuiProvince, china (KJ2012Z054) 。該報稱,專家數(shù)據(jù)不一致或不太一致可以忽略和簡化問題,專家判斷矩陣由評價指標體系的重要性G =(GGGG4,G5,G6,G7)判定,條件是它是符合一致性,符合一致的比率CR由小到大排序,排在前五位的專家判斷矩陣如下: 經(jīng)計算得一致性比率:步驟2:特級偏差矩陣的建立,如上;步驟3:選擇根據(jù)特級偏差矩陣E,選擇更高級別一致性的6個元素并且得到無向連通圖。步驟6:在(N1)中使用加法合成得到,并建立綜合判斷矩陣A *,應(yīng)用該方法的總結(jié),計劃最終排序。然而,劉欣和楊善麗基于判斷矩陣發(fā)展了阿達瑪凸組合,提供了關(guān)于 “添加法”和“乘法”凸組合一致性明顯改善的證據(jù)。關(guān)鍵詞: 群體決策;判斷矩陣;聚合;優(yōu)化1引言作為一個有效的方法用于多目標和多因素決策、層次分析法已經(jīng)廣泛應(yīng)用于許多決策方面。2 矩陣聚合方法的描述基于圖論的矩陣聚合方法:建立一個水平偏差矩陣E,選擇更一致的因素從不同的專家判斷矩陣A(k),構(gòu)建一個完整的一致判斷矩陣。3 矩陣聚合方法的應(yīng)用步驟1:根據(jù)問題的變化,將對步驟1做一定的調(diào)整。 2 3基于圖2,選擇相應(yīng)的元素從判斷矩陣A1A5是:按照加法原理得: * * 可得:因此,建立初始矩陣如下: 基于反射的原理,行和列是成正比的,丟失的元素被填滿,:W= (, , , , , , ),對于圖3,通過使用相同的計算過程得W=(,)T.由阿達瑪凸組合的基礎(chǔ)理論,根據(jù)一致的比率選擇專家矩陣A1,A2,A3,A4,A5. 為了便于研究,本文設(shè)置不同的專家判斷矩陣的權(quán)值相同. 令 (0 .2, 0 .2 , 0 .2 , 0 .2 , 0 .2 )對于 有 ,CR=.同理對于 有,CR=4 矩陣聚合的選擇和優(yōu)化總之,通過使用4個不同的方法, 獲得4個權(quán)向量: 分析上面列出的權(quán)向量得索引系統(tǒng)G=(G1,G2,G3,G4,G5,G6,G7)的重要性排序列表① G3G7G1G2G4G6G5;② G3G7G1G2G4G5G6 ③ G3G1G7G2G4G5G6; ④ G3G7G1G2G4G5G6基于上面的排序結(jié)果,錯誤是G1和G7中列名的第二、第三的地方,和G5和G的第六和第七.結(jié)合上面方案的結(jié)果,在排序結(jié)果①②④中有G7G1而③中為G1,①②④中,②④的G5G6而①中G6G5故①,合理的排序方案是:對于聚合的專家矩陣A1,A2,A3,A4,A5, 應(yīng)該被選為指標體系G= (G1, G2, G3, G4, G5, G6, G7)的權(quán)值.4 總結(jié),如何有效地減少這種差異, 在群體決策過程,應(yīng)用多種方法優(yōu)化和實際選擇將有利于提高矩陣聚合的合理性和一致性.5 參考文獻1. Lv Yuejin, Guo Xinrong. An Effective Aggregation Method for Group AHP Judgment Matrix. Theory and Practice of Systems Engineering, 2007,20(7):132136.2. Liu Xin, Yang Shanlin. Hadamard Convex Combinations of Judgment Matrix. Theory and Practice of Systems Engineering, 2000,10(4):8385.3. Yang Shanlin, Liu Xinbao. Two Aggregation Method of Judgment Matrix in GDSS. Journal of Computers, 2001,24(1):106111.4. Yang Shanlin, Liu Xinbao. Research on optimizing principle of Convex Combination coefficients of Judgment Matrix. Theory and Practice of Systems Engineering, 2001,21(8):5052.5. Xu Zeshui. A note in Document [1] and [2] for the Properties of Convex Combinations of Judgment Matrix. Theory and practice of Systems Engineering, 2001,21(1):139140.6. Wang Jian, Huang Fenggang, Jin Shaoguang. Study on Adjustment Method for Consistency of Judgment Matrix in AHP. Theory and Practice of Systems Engineering, 2005(8):8591.文章來源:The third session of the teaching management and course construction of academic conference proceedings,2012Application of Matrix Aggregation Method in Group Decision Making ProcessesWeilian Zhou(School of Management Hefei University of Technology Anhui Economic Management Institute Hefei, China)Abstract— The different matrix aggregation schemes will lead to various ranking relations and weighting vector results in group decision making processes. After analyzing and applying two kinds of the Hadamard convex bination based on matrix aggregation schemes and utilizing the graph theory, this paper will explore the more rational approaches to exam, select and optimize the results developed from different judgment matrix aggregations.Keywords— Group Decision Making。 the rationality of this abandon has been supported in cor