freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

機械外文翻譯---實驗研究激光加工表面微觀造型平行的推力軸承(完整版)

2025-07-11 00:06上一頁面

下一頁面
  

【正文】 ontamination and often indicates the wrong material for the application. If the material checks out for the job, the easiest way to prevent rust is to keep bearings in their packaging, until just before installation. 2 Avoiding failures The best way to handle bearing failures is to avoid them. This can be done in the selection process by recognizing critical performance characteristics. These include noise, starting and running torque, stiffness, nonrepetitive runout, and radial and axial play. In some applications, these items are so critical that specifying an ABEC level alone is not sufficient. Torque requirements are determined by the lubricant, retainer, raceway quality(roundness cross curvature and surface finish), and whether seals or shields are used. Lubricant viscosity must be selected carefully because inappropriate lubricant,especially in miniature bearings, causes excessive torque. Also, different lubricants have varying noise characteristics that should be matched to the application. For example, greases produce more noise than oil. Nonrepetitive runout(NRR)occurs during rotation as a random eccentricity between the inner and outer races, much like a cam action. NRR can be caused by retainer tolerance or eccentricities of the raceways and balls. Unlike repetitive runout, no pensation can be made for NRR. NRR is reflected in the cost of the bearing. It is mon in the industry to provide different bearing types and grades for specific applications. For example, a bearing with an NRR of less than is used when minimal runout is needed, such as in disk—drive spindle motors. Similarly, machine—tool spindles tolerate only minimal deflections to maintain precision cuts . Consequently, bearings are manufactured with low NRR just for machinetool applications. Contamination is unavoidable in many industrial products, and shields and seals are monly used to protect bearings from dust and dirt. However, a perfect bearing seal is not possible because of the movement between inner and outer races. Consequently, lubrication migration and contamination are always problems. Once a bearing is contaminated, its lubricant deteriorates and operation bees noisier. If it overheats, the bearing can seize. At the very least, contamination causes wear as it works between balls and the raceway, being imbedded in the races and acting as an abrasive between metal surfaces. Fending off dirt with seals and shields illustrates some methods for controlling contamination. Noise is as an indicator of bearing quality. Various noise grades have been developed to classify bearing performance capabilities. Noise analysis is done with an Anderonmeter, which is used for quality control in bearing production and also when failed bearings are returned for analysis. A transducer is attached to the outer ring and the inner race is turned at 1,800rpm on an air spindle. Noise is measured in andirons, which represent ball displacement in μm/rad. With experience, inspectors can identify the smallest flaw from their sound. Dust, for example, makes an irregular crackling. Ball scratches make a consistent popping and are the most difficult to identify. Innerrace damage is normally a constant highpitched noise, while a damaged outer race makes an intermittent sound as it rotates. Bearing defects are further identified by their frequencies. Generally, defects are separated into low, medium, and high wavelengths. Defects are also referenced to the number of irregularities per revolution. Lowband noise is the effect of longwavelength irregularities that occur about to 10 times per revolution. These are caused by a variety of inconsistencies, such as pockets in the race. Detectable pockets are manufacturing flaws and result when the race is mounted too tightly in multiplejaw chucks. Mediumhand noise is characterized by irregularities that occur 10 to 60 times per revolution. It is caused by vibration in the grinding operation that produces balls and raceways. Highhand irregularities occur at 60 to 300 times per revolution and indicate closely spaced chatter marks or widely spaced, rough irregularities. Classifying bearings by their noise characteristics allows users to specify a noise grade in addition to the ABEC standards used by most manufacturers. ABEC defines physical tolerances such as bore, outer diameter, and runout. As the ABEC class number increase (from 3 to 9), tolerances are tightened. ABEC class, however, does not specify other bearing characteristics such as raceway quality, finish, or noise. Hence, a noise classification helps improve on the industry standard. 5. Conclusion The idea of partialLST to enhance performance of the parallel thrust bearing was evaluated experimentally. Good correlation was found with a theoretical model as long as the basic assumption of laminar ?ow in the ?uid ?lm is valid. At low loads with relatively large clearances, where turbulence may occur, the experimental clearance is larger than the prediction of the performance of both unidirectional and bidirectional partialLST bearings in terms of clearance and friction coe?cient was pared with that of a baseline untextured bearing over a load range in which the theoretical model is valid. A dramatic increase, of about three times, in the clearance of the partialLST bearings pared to that of the untextured bearing was obtained over the entire load range. Consequently the friction coe?cient of the partialLST bearings is much lower, representing more than 50% reduction in friction pared to the untextured bearing. The larger clearance and lower friction make the partialLST simple parallel thrust bearing concept much more reliable and e?cient especially in sealless pumps and similar applications where the process ?uid, which is often a poor lubricant, i
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1