【摘要】基本不等式習(xí)題課一知識(shí)復(fù)習(xí)1.基本不等式:對(duì)任意a、b∈____,有a+b2≥ab成立,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).(1)x、y∈(0,+∞),且xy=P(定值),那么當(dāng)x=y(tǒng)時(shí),x+y有最___值2P.(2)x、y∈(0,+∞),且x+
2025-08-05 04:43
【摘要】§3.4基本不等式:(一)教案咸寧高中:徐浩全◆內(nèi)容分析本節(jié)課是《數(shù)學(xué)必修(5)》第三章第四節(jié)基本不等式的內(nèi)容。在前幾節(jié)課剛剛學(xué)習(xí)了不等式的性質(zhì)、一元二次不等式、二元一次不等式(組)與線(xiàn)性規(guī)劃問(wèn)題,這些內(nèi)容為本節(jié)課打下了堅(jiān)實(shí)的基礎(chǔ);同時(shí),基本不等式的學(xué)習(xí)為今后解決最值問(wèn)題提供了新的方法,為不等式的證明提供了有力的幫助,在高中數(shù)學(xué)中有著重要的地位,是高考的重點(diǎn)內(nèi)容。本節(jié)內(nèi)容
2025-04-16 12:12
【摘要】基本不等式作業(yè)(一)1.下列不等式成立的是()A.a(chǎn)bba??2B.abba???2C.21??xxD.2122??xx2.若a∈R,下列不等式恒成立的是()+1aB.1112??aC.a2+96aD.lg(a2+1
2024-11-23 13:45
【摘要】(第一課時(shí))導(dǎo)學(xué)案【課程標(biāo)準(zhǔn)要求】①探索并了解基本不等式的證明過(guò)程.②會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮?wèn)題.【學(xué)習(xí)目標(biāo)】①經(jīng)歷由幾何圖形抽象出重要不等式的過(guò)程,會(huì)用比較法證明重要不等式;②經(jīng)歷由重要不等式代換獲得基本不等式的過(guò)程,知道與的相等與不等關(guān)系及等號(hào)成立的條件;矚慫潤(rùn)厲釤瘞睞櫪廡賴(lài)賃軔朧礙鱔絹。③經(jīng)歷從不同角度探索基本不等式的證明過(guò)程,加深認(rèn)識(shí)基本不等
2025-04-16 12:23
【摘要】基本不等式【學(xué)習(xí)目標(biāo)】ab?2ba?的證明方法,要求學(xué)生掌握算術(shù)平均數(shù)與幾何平均數(shù)的意義,并掌握“均值不等式”及其推導(dǎo)過(guò)程。.【學(xué)習(xí)重難點(diǎn)】理解利用基本不等式ab?2ba?求函數(shù)的最值問(wèn)題【類(lèi)法通解】1.利用基本不等式求最值,必須按照“一正,二定,三相等”的原則,即(1)一正:符合基
2024-11-23 12:48
【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2025-07-25 15:38
【摘要】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們?cè)谑褂没静坏仁降倪^(guò)程中往往會(huì)遇到各種各樣的題型而覺(jué)得無(wú)從入手?,F(xiàn)結(jié)合教學(xué)中實(shí)際遇到的問(wèn)題,淺談利用基本不等式求最值的各類(lèi)題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)記為“和定積最大”(2)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)
2025-07-23 12:30
【摘要】:學(xué)案(第一課時(shí))一、學(xué)習(xí)目標(biāo)基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿(mǎn)足,則的最小值是.(2)已知正數(shù)滿(mǎn)足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會(huì)用基本不等式證明一些簡(jiǎn)單不等式;?會(huì)用基本不等式解決簡(jiǎn)單的最值問(wèn)題.(重點(diǎn))如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2025-11-03 17:13
【摘要】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實(shí)數(shù)、、滿(mǎn)足,則的最大值為▲.3、已知正實(shí)數(shù)x,y滿(mǎn)足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實(shí)數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實(shí)數(shù),若則的最大值是.6、(2010
2025-06-24 16:38
【摘要】第八節(jié)基本不等式考綱點(diǎn)擊.(小)值問(wèn)題.熱點(diǎn)提示,兼顧考查代數(shù)式變形、化簡(jiǎn)能力,注意“一正、二定、三相等”的條件.,可出選擇題、填空題,也可出以函數(shù)為載體的解答題.,與其他知識(shí)結(jié)合在一起來(lái)考查基本不等式,證明不會(huì)太難.但題型多樣,涉及面廣.基本不等式不等式成立的條件等號(hào)成立的條件
2025-10-31 04:10
【摘要】新教材基本不等式教學(xué)設(shè)計(jì)(17篇) 新教材基本不等式教學(xué)設(shè)計(jì)(17篇) 人的記憶力會(huì)隨著歲月的流逝而衰退,寫(xiě)作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來(lái),也便于保存一份美好的回憶。寫(xiě)范文的...
2025-08-14 07:30